Skip to Content

Notice

Agency Information Collection Activities: Request for Comments for New Information Collection

Document Details

Information about this document as published in the Federal Register.

Published Document

This document has been published in the Federal Register. Use the PDF linked in the document sidebar for the official electronic format.

Start Preamble

AGENCIES:

Federal Highway Administration (FHWA), and National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT).

ACTION:

Notice and request for comments.

SUMMARY:

The FHWA and the NHTSA invite the public to comment on our intention to request the Office of Management and Budget (OMB) to approve a new information collection. This collection is summarized below under Supplementary Information. We are required to publish this notice in the Federal Register by the Paperwork Reduction Act of 1995.

DATES:

Please submit comments by January 23, 2007.

ADDRESSES:

You may submit comments identified by DOT DMS Docket Number FHWA-2006-26125 by any of the following methods:

  • Web Site: http://dms.dot.gov. Follow the instructions for submitting comments on the DOT electronic docket site.
  • Fax: (202) 493-2251.
  • Mail: Docket Management Facility; U.S. Department of Transportation, 400 Seventh Street, S.W., Nassif Building, Room PL-401, Washington, DC, 20590-0001.
  • Hand Delivery: Room PL-401 on the plaza level of the Nassif Building, 400 Seventh Street, SW., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

Docket: For access to the docket to read background documents or comments received, go to http://dms.dot.gov at any time or to Room 401 on the plaza level of the Nassif Building, Start Printed Page 67953400 Seventh Street, S.W., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

Start Further Info

FOR FURTHER INFORMATION CONTACT:

For questions concerning the FHWA Motorcycle Crash Causation Study, please contact Carol Tan, Ph.D, Office of Safety Research and Development (HRDS), at (202) 493-3315, Turner-Fairbank Highway Research Center, Federal Highway Administration, 6300 Georgetown Pike, McLean, VA, 22101, between 9:00 a.m. and 5:30 p.m., Monday through Friday, except Federal Holidays. For questions concerning the Pilot Motorcycle Crash Causes and Outcomes Study, please contact Paul J. Tremont, Ph.D, Office of Behavioral Safety Research, NTI-131, at (202) 366-5588, National Highway Traffic Safety Administration (NHTSA), 400 Seventh Street, S.W., Washington, DC 20590 between 7:30 a.m. and 4:00 p.m., Monday through Friday, except Federal Holidays.

End Further Info End Preamble Start Supplemental Information

SUPPLEMENTARY INFORMATION:

Title: Motorcycle Crash Causation Study and Pilot Motorcycle Crash Causes and Outcomes Study.

Background: In 2004, 4,008 motorcyclists were killed and 76,000 were injured in traffic crashes in the United States, increases of 8 percent, and 14 percent respectively from 2003. Per vehicle mile traveled in 2003, motorcyclists were about 32 times more likely to die, and 6 times more likely to be injured in a motor vehicle crash than were passenger car occupants. Per 100 million miles traveled, in 2003, motorcyclist fatalities were 57 percent higher than they were in 1993. This compares with a decrease of 17.8 percent in fatality rates for occupants in passenger vehicles over the same period. These data show that the motorcycle crash problem is becoming more severe.[1]

Congress has recognized this problem and directed the Department of Transportation to conduct research that will provide a better understanding of the causes of motorcycle crashes. Specifically, in Section 5511 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU) Pub. L. 109-59, Congress directed the Secretary of Transportation to provide grants to the Oklahoma Transportation Center (OTC) for the purpose of conducting a comprehensive, in-depth motorcycle crash causation study that employs the common international methodology for in-depth motorcycle crash investigation developed by the Organization for Economic Cooperation and Development (OECD).[2] SAFETEA-LU authorized $1,408,000 for each of fiscal years 2006 and 2007, but provided for an equal match by the Grantee (Sections 5511 and 5101). The Secretary delegated authority to FHWA for the Motorcycle Crash Causation Grants under Section 5511 (71 FR 30831).

Coordination of FHWA Main Study and NHTSA Pilot Study

Prior to the SAFETEA-LU directive by Congress to administer a full-scale study of motorcycle crash causes, NHTSA awarded a contract to conduct a pilot study of Motorcycle Crash Causes and Outcomes. The intent of this pilot study is to examine appropriate applications of the OECD methodology to motorcycle crashes in the United States. This pilot test is needed before any full-scale study could be conducted because the OECD methodology has not previously been implemented in the United States, and also because this methodology incorporates some options for collecting crash and control sample data that are affected by logistical and budget constraints.

The authorization of funds by Congress for a full-scale motorcycle crash study provided an opportunity for the NHTSA pilot study to become closely coordinated with the FHWA main study. As a result, the pilot study will test the procedures FHWA will consider using as it implements the OECD methodology. Additionally, it may be possible for the pilot study to transition directly into the main study, thereby allowing the main study to avoid many startup costs (e.g., site selection, training, coding manual development, data form development, etc.) that it otherwise would have incurred. This will allow the main study to capture a larger sample of crashes with the available funding. Recognizing these advantages, the Department of Transportation intends to submit a single request to OMB for approval of both of these studies. This notice is the first step in that combined approval request.

Project Working Group Guidance

A project working group consisting of representatives from the motorcycle industry and from the motorcycle community was formed to provide input into the study design. A working group meeting was held in Denver on June 15-16, 2006. At this meeting, consensus was reached that all the relevant OECD variables would be captured in both the NHTSA pilot and FHWA full-scale studies, that some of these variables would need to be modified to conform to U.S. requirements, and that other variables would need to be added to provide necessary data related to the U.S. roadway environment.

Proposed Data Acquisition Methodology

Use of Parallel and Complementary Procedures

The OECD describes two complementary procedures to be performed for acquiring the data needed to understand the causes of motorcycle crashes. The first of these is the traditional in-depth crash investigation that focuses on the sequence of events leading up to the crash, and on the motorcycle, rider, and environmental characteristics that may have been relevant to the crash. The second procedure, known as the case-control procedure, complements the first. It requires the acquisition of matched control data to allow for a determination of the extent to which rider and driver characteristics, and pre-crash factors observed in the crash vehicles, are present in similarly-at-risk control vehicles.

Such a dual approach offers specific advantages to the understanding of crashes and the development of countermeasures. The in-depth study of the crash by itself allows for analysis of the events antecedent to the crash, some of which, if removed or altered, could result in a change in subsequent events that would have led to a non-crash, or reduced crash severity outcome. For example, an in-depth crash investigation may reveal that an automobile approaching an intersection was in a lane designated for straight through traffic only, but the motorist proceeded to make a left turn from that lane into the path of an oncoming motorcycle. That finding can, by itself, be used to develop countermeasures, and does not require matched control data. However, acquiring matched control data from similarly-at-risk riders and drivers provides additional critical information about crash causes that cannot be obtained if only crashes are examined. The main purpose of acquiring matched data is to allow for inferences to be made regarding risk factors for crash causes. A brief explanation is provided here so that those less familiar with case-control procedures will understand the Start Printed Page 67954advantage of acquiring controls.[3] Consider a hypothetical situation where it is observed that the proportion of motorcycle riders involved in crashes that have a positive Blood Alcohol Content (BAC) is the same as the proportion of matched (similarly-at-risk) control motorcycle riders not involved in crashes. And assume that the proportion of passenger-vehicle motorists who crash with motorcycles at a positive BAC is greater than matched control passenger-vehicle motorists. These data considered together would suggest that for crashes involving passenger vehicles and motorcycles, alcohol is a bigger risk factor for passenger vehicle drivers than it is for motorcycle riders. That is, the relative risk of crash involvement attributable to alcohol in motorcycle-automobile crashes is greater for passenger-vehicle motorists than for motorcyclists. Other risk factors for crashes (i.e., age, gender, riding and driving experience, fatigue level) for both motorcyclists and motorists can also be examined in this manner. If scaled interval measurements of risk factor levels are obtained (for example, if the level of alcohol is measured, not just its presence or absence), then it becomes possible to calculate functions showing how risk changes with changes in the variable of interest. Such risk functions are highly useful in the development of countermeasures.[4]

Issues Related to Sampling

Characteristics of the Crash Sample

To properly acquire in-depth crash data, it is necessary to find a location in the country that experiences the full range of motorcycle crash types that occur under a wide range of conditions and with a wide range of motorcycle rider characteristics. The location must also have a sufficiently high frequency of motorcycle crashes to allow acquisition of the crash data in a reasonable amount of time. It is anticipated that it will be possible to find a single location meeting these requirements.

It is not necessary that the crash types observed (or other composite indices or parameters of interest) be drawn from a nationally representative sample, because it is not the intent of FHWA to make projections of the national incidence of the causes of crashes involving motorcycles from this study. Rather, the focus will be on identifying the antecedents and risk factors associated with motorcycle crashes. If it is deemed necessary, FHWA and NHTSA may utilize their alternative databases that incorporate certain of the key variables that will be acquired in this study, and those databases could be used in conjunction with this study's data to make national estimates of population parameters of interest.[5]

In addition, the crash investigations will be conducted on-scene, while the involved operators and vehicles are still in place. This provides access to physical data that is less disturbed by rescue and clean up activities. It also facilitates the collection of interview data while memories are unaffected. This quick-response approach is most effective when a census of applicable crashes is selected for inclusion.

Characteristics of the Control Sample

While the occurrence of a crash involving a motorcycle in the study site is sufficient for it to be selected into the study, selecting the similarly-at-risk controls is not as straightforward. The OECD recommends several options for acquiring matched controls including interviewing motorcyclists who may be filling up at nearby gas stations, taking videos of motorcyclists who pass the crash scenes, and interviewing motorcyclists at the location of the crash location at the same time of day, same day of week, and same direction of travel. The first of these methods suffers from the shortcoming that a rider or motorist filling his fuel tank is not presented with the same risks, in the same setting, as is the crash-involved rider and motorist. To illustrate, consider a motorcycle rider who is hit from the rear by a passenger vehicle motorist on a Friday night at 1:00 a.m. There is a reasonable chance that alcohol is involved in this crash, but to estimate the relative risk it will not help to measure the BAC of passenger vehicle motorists (and motorcyclists) at a nearby gas station. Passenger-vehicle motorists and motorcyclists will need to be sampled at the location of the crash on the same day of the week, at the same hour, and from the same travel direction. Even if the suspected risk factor is not alcohol, but some other variable (e.g., distraction associated with cell phone use), it is still highly advantageous to acquire the comparison data at the crash locations (matched on time and direction), rather than somewhere else.

Using the second method mentioned above, acquiring the risk sample by taking video at the crash scenes provides a similarly-at-risk pool, and it also allows for many controls to be acquired at low cost. Its chief disadvantage is that it does not allow capture of some of the key risk factors for crashes (e.g., BAC), while others (e.g., fatigue) may be very difficult to capture. However, some risk factors could be acquired later by contacting the riders and drivers if license tag numbers are recorded, and so this method could be used to supplement the safety zone interview (described below).

The final method, the voluntary safety research interview, involves setting up a safety zone at the crash location, one week later at the same time of day, and asking those drivers and motorcyclists who pass through to volunteer in a study. With this method, Certificates of Confidentiality are presented to each interviewed driver and rider and immunity is provided from arrest. The main advantage of this method is that the key variables that are thought to affect relative crash risk can be acquired from drivers and riders who are truly similarly-at-risk. A final decision on the means of acquiring control data has not been made.

Information Proposed for Collection

The OECD protocol includes the following number of variables for each aspect of the investigation:

Administrative log: 28

Accident typology/configuration: 9

Environmental factors: 35

Motorcycle mechanical factors: 146

Motorcycle dynamics: 32

Other vehicle mechanical factors: 9

Other vehicle dynamics: 18

Human factors: 51

Personal protective equipment: 34

Contributing environmental factors: 8

Contributing vehicle factors: 13

Contributing motorcycle factors: 57 Start Printed Page 67955

Contributing human factors: 50

Contributing overall factors: 2

Note that multiple copies of various data forms will be completed as the data on each crash-involved vehicle and person and each control vehicle and person are acquired. This increases the number of variables above the sum of what is presented above. There are also diagrams and photographs that are essential elements of each investigation that are entered into the database. In prior OECD implementations, about 2,000 data elements in total were recorded for each crash.

Estimated Burden Hours for Information Collection

Frequency: This is a one time study.

Respondents: This study will be based on all crashes occurring within the sampling area; however, this burden estimate is based on what we know about fatal crashes. The plan calls for data to be captured from up to 1200 crashes with motorcycle involvement, and for all surviving crash-involved riders and drivers to be interviewed. Two control riders will be interviewed for each crash-involved motorcyclist, and one rider and one driver will be interviewed for each rider and motorist in multi-vehicle crashes. Passengers accompanying crash-involved riders and passenger-vehicle drivers will also be interviewed. The following table shows the sampling plan and estimated number of interviews assuming 1200 crashes are investigated.[6]

Maximum total crashes to be investigated is 1200.

Crash Interviews

Single vehicle motorcycle crashes = 540

Multi-vehicle (2-vehicle) motorcycle crashes (660*2) = 1320

Passenger interviews motorcycle (.10* 540 + .10*660) = 120

Passenger interviews cars (.68*660) = 449

Total Crash Interviews (540+1320+120+449) = 2429

Control interviews

Controls for single vehicle motorcycle crashes (2*540) = 1080

Controls for multi-vehicle motorcycle crashes (1*660 + 1*660) = 1320

Passenger Interviews = 0

Total Control Interviews = 2400

Grand Total Crash plus Control Interviews (2429+2400) = 4829

Estimated Average Burden per Interviewee: Crash interviews are estimated to require about 15 minutes per individual interviewed To the extent possible, crash interviews will be collected at the scene, although it is likely that some follow-ups will be needed to get completed interviews from crash involved individuals. Control individuals' interviews will be completed in a single session and are expected to require about 10 minutes per individual.

Estimated Total Annual Burden Hours: Burden hours estimates are based on the total of 2,429 crash interviews to be conducted at an average length of 15 minutes each and 2,400 control interviews to be conducted at an average length of 10 minutes each for a total one-time burden on the public of 60,435 minutes or 1007.25 hours.

Public Comments Invited: You are asked to comment on any aspect of this information collection, including: (1) Whether the proposed collection is necessary for FHWA's and NHSTA performance; (2) the accuracy of the estimated burden, (3) ways for the FHWA and NHTSA to enhance the quality, usefulness, and clarity of the collected information; and (4) ways that the burden could be minimized, including the use of electronic technology, without reducing the quality of the collected information. The agency will summarize and/or include your comments in the request for OMB's clearance of this information collection.

Start Authority

Authority: The Paperwork Reduction Act of 1995; 44 U.S.C. Chapter 35, as amended; and 49 CFR 1.48.

End Authority Start Signature

Issued on: November 15, 2006.

James R. Kabel,

Chief, Management Programs and Analysis Division.

End Signature End Supplemental Information

Footnotes

1.  More detailed information on motorcycle crashes can be found in Traffic Safety Facts—Motorcycles, published by NHTSA and available on its Web site at: http://www.-nrd.nhtsa.dot.gov/​pdf/​nrd-30/​NCSA/​Rpts/​2006/​810606.pdf.

Back to Citation

2.  The OECD methodology may be obtained by sending a request to jtrc.contact@oecd.org.

Back to Citation

3.  This being a study of crashes involving motorcycles, data will be acquired from both crash-involved motorcycles and also motor vehicles involved in those crashes as countermeasures may be developed separately for each that could lead to a reduction in crashes involving motorcycles. Similarly, when control data are acquired, data from similarly-at-risk motorcycle rider controls and similarly-at-risk automobile driver controls will also be acquired. This way a balanced picture of the causes of crashes involving motorcycles and other vehicles will emerge.

Back to Citation

4.  Certainly other outcomes besides the one presented are possible, and other comparisons are of interest. For example, it would be useful to compare crash-involved motorcyclists to non-crash involved motorcyclists and crash-involved passenger vehicle motorists to non-crash involved passenger-vehicle motorists. These comparisons would allow for estimates of changes in relative risks for riders and drivers independently.

Back to Citation

5.  There is a lengthy precedent for studying crashes using case-control methods including the Grand Rapids study, (Borkenstein, R.F., Crowther, F.R., Shumate, R.P., Ziel, W.B. & Zylman, R. (1974). The Role of the Drinking Driver in Traffic Accidents (The Grand Rapids Study). Blutalkohol, 11, Supplement 1), and of course the Hurt study, (Hurt, H.H., Jr., Ouellet, J.V., and Thom, D.R. (1981). Motorcycle Accident Cause Factors and Identification of Countermeasures Volume I: Technical Report).

Back to Citation

6.  The final crash sample size will depend on the rate at which crashes can be acquired in the selected site(s) and other matters related to logistics and the final budget. However, the study will acquire crashes on a sample size that exceeds the requirements of the OECD methodology, and will be of sufficient size to meet the goals of the study.

Back to Citation

[FR Doc. E6-19831 Filed 11-22-06; 8:45 am]

BILLING CODE 4910-22-P