Skip to Content

We invite you to try out our new beta eCFR site at We’ve made big changes to make the eCFR easier to use. Be sure to leave feedback using the 'Feedback' button on the bottom right of each page!


Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to the Floating Dry Dock Project at Naval Base San Diego in San Diego, California

Document Details

Information about this document as published in the Federal Register.

Document Statistics
Document page views are updated periodically throughout the day and are cumulative counts for this document. Counts are subject to sampling, reprocessing and revision (up or down) throughout the day.
Published Document

This document has been published in the Federal Register. Use the PDF linked in the document sidebar for the official electronic format.

Start Preamble


National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.


Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.


NMFS has received a request from the U.S. Navy (Navy) for authorization to take marine mammals incidental to the Floating Dry Dock Project at Naval Base San Diego in San Diego, California. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an incidental harassment authorization (IHA) to incidentally take marine mammals during the specified activities. NMFS is also requesting comments on a possible one-year renewal that could be issued under certain circumstances and if all requirements are met, as described in Request for Public Comments at the end of this notice. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorizations and agency responses will be summarized in the final notice of our decision.


Comments and information must be received no later than May 18, 2020.


Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service. Physical comments should be sent to 1315 East-West Highway, Silver Spring, MD 20910 and electronic comments should be sent to

Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments received electronically, including all attachments, must not exceed a 25-megabyte file size. Attachments to electronic comments will be accepted in Microsoft Word or Excel or Adobe PDF file formats only. All comments received are a part of the public record and will generally be posted online at​permit/​incidental-take-authorizations-under-marine-mammal-protection-act without change. All personal identifying information (e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information.

Start Further Info


Wendy Piniak, Office of Protected Resources, NMFS, (301) 427-8401. Electronic copies of the application and supporting documents, as well as a list of the references cited in this document, may be obtained online at:​permit/​incidental-take-authorizations-under-marine-mammal-protection-act. In case of problems accessing these documents, please call the contact listed above.

End Further Info End Preamble Start Supplemental Information



The MMPA prohibits the “take” of marine mammals, with certain exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed incidental take authorization may be provided to the public for review.

Authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s) and will not have an unmitigable adverse impact on the availability of the species or stock(s) for taking for subsistence uses (where relevant). Further, NMFS must prescribe the permissible methods of taking and other “means of effecting the least practicable adverse impact” on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stocks for taking for certain subsistence uses (referred to in shorthand as “mitigation”); and requirements pertaining to the mitigation, monitoring and reporting of the takings are set forth. The definitions of all applicable MMPA statutory terms cited above are included in the relevant sections below.

National Environmental Policy Act

To comply with the National Environmental Policy Act of 1969 (NEPA; 42 U.S.C. 4321 et seq.) and NOAA Administrative Order (NAO) 216-6A, NMFS must review our proposed action (i.e., the issuance of an incidental harassment authorization) with respect to potential impacts on the human environment.

This action is consistent with categories of activities identified in Categorical Exclusion B4 (incidental harassment authorizations with no anticipated serious injury or mortality) of the Companion Manual for NOAA Administrative Order 216-6A, which do not individually or cumulatively have the potential for significant impacts on the quality of the human environment and for which we have not identified any extraordinary circumstances that would preclude this categorical exclusion. Accordingly, NMFS has preliminarily determined that the issuance of the proposed IHA qualifies to be categorically excluded from further NEPA review.

We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the IHA request.Start Printed Page 21180

Summary of Request

On November 26, 2019, NMFS received a request from the Navy for an IHA to take marine mammals incidental to the Floating Dry Dock Project at Naval Base San Diego in San Diego, California. We received a revised application on February 10, 2020. The application was deemed adequate and complete on March 17, 2020. The Navy's request is for take of a small number of California sea lions by Level B harassment only. Neither the Navy nor NMFS expects serious injury or mortality to result from this activity and, therefore, an IHA is appropriate.

Description of Proposed Activity


Navy has requested authorization for take of marine mammals incidental to in-water activities associated with the Floating Dry Dock Project at Naval Base San Diego in San Diego, California. The Navy proposes to construct a floating dry dock and associated pier-side access in the south-central portion of San Diego Bay. The floating dry dock is needed to ensure the Base's capability to conduct berth-side repair and maintenance of vessels. Implementation of the proposed project requires installation of two mooring dolphins, including vertical and angled structural piles, as well as fender piles, installation of a concrete ramp wharf and vehicle bridge, and dredging at the proposed floating dry dock location. In-water construction will include installation of a maximum of 56 24-inch concrete piles using impact pile driving and high-pressure water jetting and a maximum of 10 24-inch steel pipe piles using impact and vibratory pile driving. Sounds produced by these activities may result in take, by Level B harassment, of marine mammals located in San Diego Bay, California. In-water pile-driving activities are anticipated to occur for 50 days during the period from September 15, 2020 to September 14, 2021.

Dates and Duration

In-water activities (pile installation) associated with the project are anticipated to begin September 15, 2020, and be completed by September 14, 2021. Pile driving activities would occur for 50 days during the proposed project dates. In-water activities will occur during daylight hours only.

Specific Geographic Region

The activities would occur in the south-central portion of San Diego Bay (Figure 1). San Diego Bay is a narrow, crescent-shaped natural embayment oriented northwest-southeast with an approximate length of 24 kilometers (km) (15 miles (mi)) and a total area of roughly 4 km2 (11,000 acres; Port of San Diego, 2007). The width of the Bay ranges from 0.3 to 5.8 km (0.2 to 3.6 mi), and depths range from 23 m (74 ft) Mean Lower Low Water (MLLW) near the tip of Ballast Point to less than 1.2 m (4 ft) at the southern end (Merkel and Associates, Inc., 2009). Approximately half of the Bay is less than 4.5 meters (m) (15 feet (ft)) deep and much of it is less than 15 m (50 ft) deep (Merkel and Associates, Inc., 2009). The northern and central portions of the Bay have been shaped by historical dredging and filling to support large ship navigation and shoreline development. The United States Army Corps of Engineers dredges the main navigation channel in the Bay to maintain a depth of 14 m (47 ft) MLLW and is responsible for providing safe transit for private, commercial, and military vessels within the bay (NOAA 2012). Outside of the navigation channel, the bay floor consists of platforms at depths that vary slightly (Merkel and Associates, Inc., 2009). Within the Central Bay, typical depths range from 10.7-11.6 m (35-38 ft) MLLW to support large ship turning and anchorage, and small vessel marinas are typically dredged to depths of 4.6 m (15 ft) MLLW (Merkel and Associates, Inc., 2009). The area around the proposed project site is approximately 0.01 km2 (2.72 acres) with bathymetry ranging from 2.5-4 m (8-13 ft) MLLW (Triton Engineers 2019). Proposed dredging in the project area in preparation for the floating dry dock would increase this depth at the project site to 12 m (39 ft).

Start Printed Page 21181

Benthic substrate in San Diego Bay is largely sand (Naval Facilities Engineering Command, Southwest and Port of San Diego Bay, 2013) as tidal currents tend to keep the finer silt and clay fractions in suspension, except in harbors and elsewhere in the lee of structures where water movement is diminished. Much of the shoreline consists of riprap and manmade structures. The project site is a shallow subtidal area and contains an eelgrass bed less 1-acre in size (Triton Engineers, 2019; Merkel and Associates, Inc., 2018). Over-water structures such as the existing MGBW piles and dock structures provide substrates for the growth of algae and invertebrates off the bottom and support abundant fish populations. Eelgrass present within the project site is important habitat for invertebrates, fish, and birds (Naval Facilities Engineering Command, Southwest and Port of San Diego Bay, 2013).

San Diego Bay is heavily used by commercial, recreational, and military vessels, with an average of 82,413 vessel movements (in or out of the Bay) per year (approximately 225 vessel transits per day), a majority of which are presumed to occur during daylight hours. This number of transits does not include recreational boaters that use San Diego Bay, estimated to number 200,000 annually (San Diego Harbor Safety Committee 2009). Background (ambient) noise in the south-central San Diego Bay was an average of 126 decibels (dB) (L50) in 2019 (Dahl and Dall'Osto 2019). This is similar to ambient noise levels measured in the northern San Diego Bay which ranged from 126 to 137 dB (L50) in 2014, 2015, and 2016 (Naval Facilities Engineering Command, Southwest, 2018). Sound levels in the south-central San Diego Bay are likely lower due to the reduced ship traffic relative to the north San Diego Bay. Noise from non-impulsive sources associated with the proposed activities is, therefore assumed to become indistinguishable from background noise as it diminishes to 126 dB re: 1 micropascal (µPa) with distance from the source (Dahl and Dall'Osto, 2019).

Detailed Description of Specific Activity

The Navy proposes to construct a floating dry dock and associated pier-side access in the south-central portion of San Diego Bay. The floating dry dock is needed in order to address current and projected shortfall of dry dock space required for maintenance of the Pacific Fleet, and ensure the Naval Base San Diego's capability to conduct berth-side repair and maintenance of vessels. The proposed activities will allow for the emplacement and operation of a floating dry dock and associated pier-side access at MGBW Commercial Out Lease (COL) in the southern edge of Naval Base San Diego. The proposed project site is located immediately adjacent to the MGBW National City Boatyard, a full-service facility that specializes in refits, repairs, and new construction.

Implementation of the proposed project requires in-water activities that will produce sounds that may result in take of marine mammals located in the San Diego Bay including dredging, installation of two mooring dolphins, Start Printed Page 21182including vertical and angled structural piles, as well as fender piles, and installation of a concrete ramp wharf and vehicle bridge. Two mooring dolphins would be located forward and aft of the proposed dry dock. The mooring dolphins would each be supported by up to 16 vertical 24-inch octagonal concrete piles (32 total) installed using impact pile driving and high-pressure water jetting. The aft mooring dolphin would also require approximately 2 24-inch angled steel pipe piles. Up to 8 additional 24-inch steel pipe piles are anticipated to be required for the forward and aft mooring dolphins. Cast-in-place reinforced concrete caps, 9.1 by 9.1 m (30 by 30 ft), would be installed at each mooring dolphin location. Grippers would be secured to the dolphins' concrete pile caps and used to hold the floating dry dock in position. Construction materials would be delivered by truck and the piles would be installed using a floating crane and an impact or vibratory pile driver aided by jetting methods. Fender piles associated with the aft mooring dolphin would consist of 2 steel pipe piles, 24-inches in diameter or less. All steel pipe piles would initially be installed using vibratory pile driving, followed by the use of an impact pile driver.

Two pedestrian bridges and a vehicle bridge would be constructed to provide landside access and servicing to the proposed floating dry dock. The port-side pedestrian bridge, which would provide access to the port wing deck, would be 35 m (115 ft) long and supported by a landside concrete abutment. The proposed ramp wharf would be approximately 17 by 24 m (80 by 55 ft) long and would support an 18-m (60-ft) long vehicle bridge that would provide vehicle access to the MGBW COL floating dry dock. The ramp wharf would also support the starboard pedestrian bridge, which would provide access to the starboard wing deck. The concrete ramp wharf and vehicle bridge would cover approximately 0.12 acres (5,360 ft2) and would be supported by 24 24-inch octagonal concrete piles installed using vibratory pile driving and high-pressure water jetting. These access structures, which would be similar to those currently provided at the south berth of the Mole Pier and other Navy piers in the vicinity, would allow for construction vehicles and heavy equipment to be used during maintenance of Navy vessels.

Proposed pile driving activities are planned to occur from September 15, 2020 through September 14, 2021. The total number of pile driving days would not exceed 50 days during this time period.

Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting).

Description of Marine Mammals in the Area of Specified Activities

Sections 3 and 4 of the application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history, of the potentially affected species. Additional information regarding population trends and threats may be found in NMFS's Stock Assessment Reports (SARs;​national/​marine-mammal-protection/​marine-mammal-stock-assessments) and more general information about these species (e.g., physical and behavioral descriptions) may be found on NMFS's website (​find-species).

Table 1 lists all species or stocks for which take is expected and proposed to be authorized for this action, and summarizes information related to the population or stock, including regulatory status under the MMPA and ESA and potential biological removal (PBR), where known. For taxonomy, we follow Committee on Taxonomy (2019). PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS's SARs). While no mortality is anticipated or authorized here, PBR and annual serious injury and mortality from anthropogenic sources are included here as gross indicators of the status of the species and other threats.

Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS' stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS' U.S. Pacific Stock Assessment Reports (e.g., Carretta et al., 2019). All values presented in Table 1 are the most recent available at the time of publication and are available in the 2018 Final SARs (Carretta et al., 2019) (available online at:​national/​marine-mammal-protection/​marine-mammal-stock-assessments).

Table 1—Marine Mammals Potentially Present Within Central San Diego, California, During the Specified Activity

Common nameScientific nameStockESA/ MMPA status; strategic (Y/N) 1Stock abundance (CV, Nmin, most recent abundance survey) 2PBRAnnual M/SI 3
Order Carnivora—Superfamily Pinnipedia
Family Otariidae (eared seals and sea lions):
California sea lionZalophus californianusU.S.-, -, N257,606 (N/A, 233,515, 2014)14,011>321
1 Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
2 NMFS marine mammal stock assessment reports online at:​national/​marine-mammal-protection/​marine-mammal-stock-assessments. CV is coefficient of variation; Nmin is the minimum estimate of stock abundance. In some cases, CV is not applicable. California sea lion population size was estimated from a 1975-2014 time series of pup counts (Lowry et al. 2017), combined with mark-recapture estimates of survival rates (DeLong et al. 2017, Laake et al. 2018).Start Printed Page 21183
3 These values, found in NMFS' SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g., commercial fisheries, ship strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases.
NOTEItalicized species are not expected to be taken or proposed for authorization.

As indicated above, one species (with one managed stock) in Table 1 temporally and spatially co-occurs with the activity to the degree that take is reasonably likely to occur, and we have proposed authorizing it. The most frequently observed marine mammal species in San Diego Bay are the California sea lion (Zalophus californianus), which often rests on buoys and other structures and occurs throughout the North to North-Central Bay; coastal bottlenose dolphin (Tursiops truncatus), which is regularly seen in the North Bay; Pacific harbor seal (Phoca vitulina), which frequently enters the North Bay; and common dolphins (Delphinus spp.), which are rare visitors in the North Bay. Gray whales (Eschrichtius robustus) are occasionally sighted near the mouth of San Diego Bay during their winter migration (Naval Facilities Engineering Command, Southwest and Port of San Diego Bay, 2013). Based on many years of observations and numerous Navy-funded surveys in San Diego Bay (Merkel and Associates, Inc., 2008; Sorensen and Swope, 2010; Graham and Saunders, 2014; Tierra Data Inc., 2016), marine mammals rarely occur south of the Coronado Bay Bridge, are not known to occur near Naval Base San Diego with any regularity, and any occurrence in the project area would be very rare. Therefore, while coastal bottlenose dolphins, Pacific harbor seals, common dolphins, and gray whales have been reported in San Diego Bay, they are not anticipated to occur in the project area and no take of these species is anticipated. The only species that is anticipated to occur south of the Coronado Bridge with any regularity is the California sea lion, based on the sighting of two individuals during 2010 surveys (Sorensen and Swope, 2010). Therefore, only impacts to the California sea lion are evaluated in this IHA.


California Sea Lion

California sea lions inhabit the eastern North Pacific Ocean from Islas Marias north of Puerto Vallarta, Mexico, north throughout the Gulf of California, and along the Baja California Peninsula north to the Gulf of Alaska. The U.S. stock ranges from the U.S./Mexico border to Canada. They occupy shallow ocean waters and prefer sandy beaches or rocky coves for breeding and haul-out sites, however they also commonly haul out on marina docks, jetties, and buoys. Pupping and breeding occur from May through July outside of the proposed project timeframe. Rookery sites in Southern California include San Miguel Island and to the more southerly Channel Islands of San Nicolas, Santa Barbara, and San Clemente (Lowry et al. 2017). California sea lions commonly forage on a variety of prey including fish and squid, and exhibit annual migratory movements between breeding and foraging habitats. From August to December, adult and sub-adult males migrate north along the U.S. west coast to foraging areas along the coasts of California, Oregon, Washington, British Columbia, Canada, and southeast Alaska. In the spring, males migrate southward to breeding rookeries in the Channel Islands and Mexico. Females and pups/juveniles commonly stay near breeding areas (Lowry et al. 2017), but some females may migrate as far north as San Francisco Bay in winter, and during El Niño events, have been observed as far north as central Oregon. The California sea lion molts gradually over several months during late summer and fall.

As with most sea lions, a complete population count of all harbor seals in California is not possible as all members of the population are not ashore simultaneously. Population estimates for the U.S. stock have increased since the 1970s and are derived from 3 primary data sources: 1) annual pup counts (Lowry et al. 2017); 2) annual survivorship estimates from mark-recapture data (DeLong et al. 2017); and 3) estimates of human-caused serious injuries, mortalities, and bycatch (Carretta and Enriquez 2012a, 2012b, Carretta et al. 2016, Carretta et al. 2018a, 2018b). Using a logistic growth model and reconstructed population size estimates from 1975-2014, Laake et al. (2018) estimated a net productivity rate of 7 percent per year. The population is considered within the range of its optimum sustainable population (OSP) size (Laake et al. 2018).

From January 2013 through September 2016, a greater than expected number of young malnourished California sea lions stranded along the coast of California and NMFS declared this an Unusual Mortality Event. Sea lions stranding from an early age (6-8 months old) through two years of age (hereafter referred to as juveniles) were consistently underweight without other disease processes detected. The primary cause of the UME was malnutrition of sea lion pups and yearlings due to ecological factors. These factors included shifts in distribution, abundance and/or quality of sea lion prey items around the Channel Island rookeries during critical sea lion life history events (nursing by adult females, and transitioning from milk to prey by young sea lions). Threats to the U.S. stock include interactions with fisheries, entanglement in marine debris, entrainment in power plant intakes, oil exposure, vessel strikes, dog attacks, and human interactions/harassment (shootings, direct removals) (Carretta et al., 2019).

In San Diego Bay, in general, California sea lions regularly occur on rocks, buoys and other structures, and especially on bait barges, although numbers vary greatly. California sea lion occurrence in the project area is expected to be rare based on sighting of only two individuals in the water off of Navy Base San Diego during one 2010 survey (Sorensen and Swope, 2010). The Sorenson and Swope (2010) survey is the only known survey to provide marine mammal observation data below the San Diego Coronado Bridge (in mid San Diego Bay). The single survey was on February 16, 2010. During this survey one single sea lion was observed off Pier 3 and one single sea lion was observed ~600m from the proposed project site.


No ESA-designated critical habitat or Biologically Important Areas overlap with the project area.

Marine Mammal Hearing

Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Current data indicate that not all marine mammal species have equal hearing capabilities (e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) recommended that marine mammals be divided into functional hearing groups based on directly measured or estimated hearing ranges on the basis of available behavioral response data, audiograms Start Printed Page 21184derived using auditory evoked potential techniques, anatomical modeling, and other data. Note that no direct measurements of hearing ability have been successfully completed for mysticetes (i.e., low-frequency cetaceans). Subsequently, NMFS (2018) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 dB threshold from the normalized composite audiograms, with the exception for lower limits for low-frequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. Marine mammal hearing groups and their associated hearing ranges are provided in Table 2.

Table 2—Marine Mammal Hearing Groups

[NMFS, 2018]

Hearing groupGeneralized hearing range *
Low-frequency (LF) cetaceans (baleen whales)7 Hz to 35 kHz.
Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales)150 Hz to 160 kHz.
High-frequency (HF) cetaceans (true porpoises, Kogia, river dolphins, cephalorhynchid, Lagenorhynchus cruciger & L. australis)275 Hz to 160 kHz.
Phocid pinnipeds (PW) (underwater) (true seals)50 Hz to 86 kHz.
Otariid pinnipeds (OW) (underwater) (sea lions and fur seals)60 Hz to 39 kHz.
* Represents the generalized hearing range for the entire group as a composite (i.e., all species within the group), where individual species' hearing ranges are typically not as broad. Generalized hearing range chosen based on ~65 dB threshold from normalized composite audiogram, with the exception for lower limits for LF cetaceans (Southall et al. 2007) and PW pinniped (approximation).

The pinniped functional hearing group was modified from Southall et al. (2007) on the basis of data indicating that phocid species have consistently demonstrated an extended frequency range of hearing compared to otariids, especially in the higher frequency range (Hemilä et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 2013).

For more detail concerning these groups and associated frequency ranges, please see NMFS (2018) for a review of available information. One marine mammal species (otariid pinniped species) has the reasonable potential to co-occur with the proposed activities. Please refer to Table 1.

Potential Effects of Specified Activities on Marine Mammals and Their Habitat

This section includes a summary and discussion of the ways that components of the specified activity may impact marine mammals and their habitat. The Estimated Take by Incidental Harassment section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take by Incidental Harassment section, and the Proposed Mitigation section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and how those impacts on individuals are likely to impact marine mammal species or stocks.

Description of Sound Sources

The marine soundscape is comprised of both ambient and anthropogenic sounds. Ambient sound is defined as the all-encompassing sound in a given place and is usually a composite of sound from many sources both near and far (ANSI, 1995). The sound level of an area is defined by the total acoustical energy being generated by known and unknown sources. These sources may include physical (e.g., waves, wind, precipitation, earthquakes, ice, atmospheric sound), biological (e.g., sounds produced by marine mammals, fish, and invertebrates), and anthropogenic sound (e.g., vessels, dredging, aircraft, construction).

The sum of the various natural and anthropogenic sound sources at any given location and time—which comprise “ambient” or “background” sound—depends not only on the source levels (as determined by current weather conditions and levels of biological and shipping activity) but also on the ability of sound to propagate through the environment. In turn, sound propagation is dependent on the spatially and temporally varying properties of the water column and sea floor, and is frequency-dependent. As a result of the dependence on a large number of varying factors, ambient sound levels can be expected to vary widely over both coarse and fine spatial and temporal scales. Sound levels at a given frequency and location can vary by 10-20 dB from day to day (Richardson et al., 1995). The result is that, depending on the source type and its intensity, sound from the specified activity may be a negligible addition to the local environment or could form a distinctive signal that may affect marine mammals.

In-water construction activities associated with the project would include impact pile driving, vibratory pile driving, and high pressure water jetting. The sounds produced by these activities fall into one of two general sound types: Impulsive and non-impulsive. Impulsive sounds (e.g., explosions, gunshots, sonic booms, impact pile driving) are typically transient, brief (less than 1 second), broadband, and consist of high peak sound pressure with rapid rise time and rapid decay (ANSI, 1986; NIOSH, 1998; ANSI, 2005; NMFS, 2018). Non-impulsive sounds (e.g. aircraft, vessels, machinery operations such as drilling or dredging, vibratory pile driving, and active sonar systems) can be broadband, narrowband or tonal, brief or prolonged (continuous or intermittent), and typically do not have the high peak sound pressure with raid rise/decay time that impulsive sounds do (ANSI, 1995; NIOSH, 1998; NMFS, 2018). The distinction between these two sound types is important because they have differing potential to cause physical effects, particularly with regard to hearing (e.g., Ward, 1997 in Southall et al., 2007).

Two types of pile hammers would be used on this project: Impact and vibratory. Impact hammers operate by repeatedly dropping a heavy piston onto a pile to drive the pile into the substrate. Sound generated by impact hammers is characterized by rapid rise times and high peak levels, a potentially injurious combination (Hastings and Popper 2005). Vibratory hammers install piles by vibrating them and allowing the weight of the hammer to push the pile into the sediment. Vibratory hammers produce significantly less sound than impact hammers. Peak sound pressure level (SPL) may be 180 dB or greater, Start Printed Page 21185but are generally 10 to 20 dB lower than SPLs generated during impact pile driving of the same-sized pile (Oestman et al., 2009). Rise time is slower, reducing the probability and severity of injury, and sound energy is distributed over a greater amount of time (Nedwell and Edwards, 2002; Carlson et al., 2005).

The likely or possible impacts of Navy's proposed activity on marine mammals could involve both non-acoustic and acoustic stressors. Potential non-acoustic stressors could result from the physical presence of the equipment and personnel; however, any impacts to marine mammals are expected to primarily be acoustic in nature. Acoustic stressors include effects of heavy equipment operation during pile installation.

Acoustic Impacts

The introduction of anthropogenic noise into the aquatic environment from pile driving is the primary means by which marine mammals may be harassed from Navy's specified activity. In general, animals exposed to natural or anthropogenic sound may experience physical and psychological effects, ranging in magnitude from none to severe (Southall et al., 2007). Exposure to in-water construction noise has the potential to result in auditory threshold shifts and behavioral reactions (e.g., avoidance, temporary cessation of foraging and vocalizing, changes in dive behavior) and/or lead to non-observable physiological responses such an increase in stress hormones (Richardson et al., 1995; Gordon et al., 2004; Nowacek et al., 2007; Southall et al., 2007; Gotz et al., 2009). Additional noise in a marine mammal's habitat can mask acoustic cues used by marine mammals to carry out daily functions such as communication and predator and prey detection. The effects of pile driving on marine mammals are dependent on several factors, including, but not limited to, sound type (e.g., impulsive vs. non-impulsive), the species, age and sex class (e.g., adult male vs. mom with calf), duration of exposure, the distance between the pile and the animal, received levels, behavior at time of exposure, and previous history with exposure (Wartzok et al., 2004; Southall et al., 2007). Here we discuss physical auditory effects (threshold shifts), followed by behavioral effects and potential impacts on habitat.

Richardson et al. (1995) described zones of increasing intensity of effect that might be expected to occur, in relation to distance from a source and assuming that the signal is within an animal's hearing range. First is the area within which the acoustic signal would be audible (potentially perceived) to the animal, but not strong enough to elicit any overt behavioral or physiological response. The next zone corresponds with the area where the signal is audible to the animal and of sufficient intensity to elicit behavioral or physiological responsiveness. Third is a zone within which, for signals of high intensity, the received level is sufficient to potentially cause discomfort or tissue damage to auditory or other systems. Overlaying these zones to a certain extent is the area within which masking (i.e., when a sound interferes with or masks the ability of an animal to detect a signal of interest that is above the absolute hearing threshold) may occur; the masking zone may be highly variable in size.

We describe the more severe effects (i.e., permanent hearing impairment, certain non-auditory physical or physiological effects) only briefly as we do not expect that there is a reasonable likelihood that Navy's activities would result in such effects (see below for further discussion). NMFS defines a noise-induced threshold shift (TS) as a change, usually an increase, in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). The amount of threshold shift is customarily expressed in dB. A TS can be permanent or temporary. As described in NMFS (2018), there are numerous factors to consider when examining the consequence of TS, including, but not limited to, the signal temporal pattern (e.g., impulsive or non-impulsive), likelihood an individual would be exposed for a long enough duration or to a high enough level to induce a TS, the magnitude of the TS, time to recovery (seconds to minutes or hours to days), the frequency range of the exposure (i.e., spectral content), the hearing and vocalization frequency range of the exposed species relative to the signal's frequency spectrum (i.e., how animal uses sound within the frequency band of the signal; e.g., Kastelein et al., 2014b), and the overlap between the animal and the source (e.g., spatial, temporal, and spectral).

Permanent Threshold Shift (PTS)—NMFS defines PTS as a permanent, irreversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS 2018). Available data from humans and other terrestrial mammals indicate that a 40 dB threshold shift approximates PTS onset (see Ward et al., 1958, 1959; Ward, 1960; Kryter et al., 1966; Miller, 1974; Ahroon et al., 1996; Henderson et al., 2008). PTS levels for marine mammals are estimates, as with the exception of a single study unintentionally inducing PTS in a harbor seal (Kastak et al. 2008), there are no empirical data measuring PTS in marine mammals largely due to the fact that, for various ethical reasons, experiments involving anthropogenic noise exposure at levels inducing PTS are not typically pursued or authorized (NMFS 2018).

Temporary Threshold Shift (TTS)—A temporary, reversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). Based on data from cetacean TTS measurements (see Southall et al., 2007), a TTS of 6 dB is considered the minimum threshold shift clearly larger than any day-to-day or session-to-session variation in a subject's normal hearing ability (Schlundt et al. 2000; Finneran et al. 2000, 2002). As described in Finneran (2016), marine mammal studies have shown the amount of TTS increases with cumulative sound exposure level (SELcum) in an accelerating fashion: At low exposures with lower SELcum, the amount of TTS is typically small and the growth curves have shallow slopes. At exposures with higher higher SELcum, the growth curves become steeper and approach linear relationships with the noise SEL.

Depending on the degree (elevation of threshold in dB), duration (i.e., recovery time), and frequency range of TTS, and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious (similar to those discussed in auditory masking, below). For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animal is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during time when communication is critical for successful mother/calf interactions could have more serious impacts. We note that reduced hearing sensitivity as a simple function of aging has been observed in marine mammals, as well as humans and other taxa (Southall et al., 2007), so we can infer that strategies exist for coping with this condition to some degree, though likely not without cost.Start Printed Page 21186

Currently, TTS data only exist for four species of cetaceans (bottlenose dolphin, beluga whale (Delphinapterus leucas), harbor porpoise (Phocoena phocoena), and Yangtze finless porpoise (Neophocoena asiaeorientalis)) and five species of pinnipeds exposed to a limited number of sound sources (i.e., mostly tones and octave-band noise) in laboratory settings (Finneran, 2015). TTS was not observed in trained spotted (Phoca largha) and ringed (Pusa hispida) seals exposed to impulsive noise at levels matching previous predictions of TTS onset (Reichmuth et al. 2016). In general, harbor seals and harbor porpoises have a lower TTS onset than other measured pinniped or cetacean species (Finneran, 2015). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species. No data are available on noise-induced hearing loss for mysticetes. For summaries of data on TTS in marine mammals or for further discussion of TTS onset thresholds, please see Southall et al. (2007), Finneran and Jenkins (2012), Finneran (2015), and Table 5 in NMFS (2018). Installing piles requires a combination of impact pile driving and vibratory pile driving. For the project, these activities would not occur at the same time and there would likely be pauses in activities producing the sound during each day. Given these pauses and that many marine mammals are likely moving through the action area and not remaining for extended periods of time, the potential for TS declines.

Behavioral Harassment—Behavioral disturbance may include a variety of effects, including subtle changes in behavior (e.g., minor or brief avoidance of an area or changes in vocalizations), more conspicuous changes in similar behavioral activities, and more sustained and/or potentially severe reactions, such as displacement from or abandonment of high-quality habitat. Disturbance may result in changing durations of surfacing and dives, number of blows per surfacing, or moving direction and/or speed; reduced/increased vocal activities; changing/cessation of certain behavioral activities (such as socializing or feeding); visible startle response or aggressive behavior (such as tail/fluke slapping or jaw clapping); avoidance of areas where sound sources are located. Pinnipeds may increase their haul out time, possibly to avoid in-water disturbance (Thorson and Reyff 2006). Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors (e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors (e.g., Richardson et al., 1995; Wartzok et al., 2003; Southall et al., 2007; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source (e.g., whether it is moving or stationary, number of sources, distance from the source). In general, pinnipeds seem more tolerant of, or at least habituate more quickly to, potentially disturbing underwater sound than do cetaceans, and generally seem to be less responsive to exposure to industrial sound than most cetaceans. Please see Appendices B-C of Southall et al. (2007) for a review of studies involving marine mammal behavioral responses to sound.

Habituation can occur when an animal's response to a stimulus wanes with repeated exposure, usually in the absence of unpleasant associated events (Wartzok et al., 2003). Animals are most likely to habituate to sounds that are predictable and unvarying. It is important to note that habituation is appropriately considered as a “progressive reduction in response to stimuli that are perceived as neither aversive nor beneficial,” rather than as, more generally, moderation in response to human disturbance (Bejder et al., 2009). The opposite process is sensitization, when an unpleasant experience leads to subsequent responses, often in the form of avoidance, at a lower level of exposure.

As noted above, behavioral state may affect the type of response. For example, animals that are resting may show greater behavioral change in response to disturbing sound levels than animals that are highly motivated to remain in an area for feeding (Richardson et al., 1995; NRC, 2003; Wartzok et al., 2003). Controlled experiments with captive marine mammals have showed pronounced behavioral reactions, including avoidance of loud sound sources (Ridgway et al., 1997; Finneran et al., 2003). Observed responses of wild marine mammals to loud pulsed sound sources (typically seismic airguns or acoustic harassment devices) have been varied but often consist of avoidance behavior or other behavioral changes suggesting discomfort (Morton and Symonds 2002; see also Richardson et al., 1995; Nowacek et al., 2007).

Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC, 2005). However, there are broad categories of potential response, which we describe in greater detail here, that include alteration of dive behavior, alteration of foraging behavior, effects to breathing, interference with or alteration of vocalization, avoidance, and flight.

Changes in dive behavior can vary widely, and may consist of increased or decreased dive times and surface intervals as well as changes in the rates of ascent and descent during a dive (e.g., Frankel and Clark 2000; Costa et al., 2003; Ng and Leung 2003; Nowacek et al., 2004; Goldbogen et al., 2013a,b). Variations in dive behavior may reflect interruptions in biologically significant activities (e.g., foraging) or they may be of little biological significance. The impact of an alteration to dive behavior resulting from an acoustic exposure depends on what the animal is doing at the time of the exposure and the type and magnitude of the response.

Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators (e.g., bubble nets or sediment plumes), or changes in dive behavior. As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in response in any given circumstance (e.g., Croll et al., 2001; Nowacek et al., 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationship between prey availability, foraging effort and success, and the life history stage of the animal.

Variations in respiration naturally vary with different behaviors and Start Printed Page 21187alterations to breathing rate as a function of acoustic exposure can be expected to co-occur with other behavioral reactions, such as a flight response or an alteration in diving. However, respiration rates in and of themselves may be representative of annoyance or an acute stress response. Various studies have shown that respiration rates may either be unaffected or could increase, depending on the species and signal characteristics, again highlighting the importance in understanding species differences in the tolerance of underwater noise when determining the potential for impacts resulting from anthropogenic sound exposure (e.g., Kastelein et al., 2001, 2005b, 2006; Gailey et al., 2007).

Marine mammals vocalize for different purposes and across multiple modes, such as whistling, echolocation click production, calling, and singing. Changes in vocalization behavior in response to anthropogenic noise can occur for any of these modes and may result from a need to compete with an increase in background noise or may reflect increased vigilance or a startle response. For example, in the presence of potentially masking signals, humpback whales and killer whales have been observed to increase the length of their songs (Miller et al., 2000; Fristrup et al., 2003; Foote et al., 2004), while right whales (Eubalaena glacialis) have been observed to shift the frequency content of their calls upward while reducing the rate of calling in areas of increased anthropogenic noise (Parks et al., 2007b). In some cases, animals may cease sound production during production of aversive signals (Bowles et al., 1994).

Avoidance is the displacement of an individual from an area or migration path as a result of the presence of a sound or other stressors, and is one of the most obvious manifestations of disturbance in marine mammals (Richardson et al., 1995). For example, gray whales (Eschrictius robustus) are known to change direction—deflecting from customary migratory paths—in order to avoid noise from seismic surveys (Malme et al., 1984). Avoidance may be short-term, with animals returning to the area once the noise has ceased (e.g., Bowles et al., 1994; Goold 1996; Stone et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007). Longer-term displacement is possible, however, which may lead to changes in abundance or distribution patterns of the affected species in the affected region if habituation to the presence of the sound does not occur (e.g., Blackwell et al., 2004; Bejder et al., 2006; Teilmann et al., 2006).

A flight response is a dramatic change in normal movement to a directed and rapid movement away from the perceived location of a sound source. The flight response differs from other avoidance responses in the intensity of the response (e.g., directed movement, rate of travel). Relatively little information on flight responses of marine mammals to anthropogenic signals exist, although observations of flight responses to the presence of predators have occurred (Connor and Heithaus, 1996). The result of a flight response could range from brief, temporary exertion and displacement from the area where the signal provokes flight to, in extreme cases, marine mammal strandings (Evans and England, 2001). However, it should be noted that response to a perceived predator does not necessarily invoke flight (Ford and Reeves 2008), and whether individuals are solitary or in groups may influence the response.

Behavioral disturbance can also impact marine mammals in more subtle ways. Increased vigilance may result in costs related to diversion of focus and attention (i.e., when a response consists of increased vigilance, it may come at the cost of decreased attention to other critical behaviors such as foraging or resting). These effects have generally not been demonstrated for marine mammals, but studies involving fish and terrestrial animals have shown that increased vigilance may substantially reduce feeding rates (e.g., Beauchamp and Livoreil 1997; Fritz et al,, 2002; Purser and Radford 2011). In addition, chronic disturbance can cause population declines through reduction of fitness (e.g., decline in body condition) and subsequent reduction in reproductive success, survival, or both (e.g., Harrington and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However, Ridgway et al. (2006) reported that increased vigilance in bottlenose dolphins exposed to sound over a five-day period did not cause any sleep deprivation or stress effects.

Many animals perform vital functions, such as feeding, resting, traveling, and socializing, on a diel cycle (24-hour cycle). Disruption of such functions resulting from reactions to stressors such as sound exposure are more likely to be significant if they last more than one diel cycle or recur on subsequent days (Southall et al., 2007). Consequently, a behavioral response lasting less than one day and not recurring on subsequent days is not considered particularly severe unless it could directly affect reproduction or survival (Southall et al., 2007). Note that there is a difference between multi-day substantive behavioral reactions and multi-day anthropogenic activities. For example, just because an activity lasts for multiple days does not necessarily mean that individual animals are either exposed to activity-related stressors for multiple days or, further, exposed in a manner resulting in sustained multi-day substantive behavioral responses.

Stress responses—An animal's perception of a threat may be sufficient to trigger stress responses consisting of some combination of behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses (e.g., Seyle, 1950; Moberg, 2000). In many cases, an animal's first and sometimes most economical (in terms of energetic costs) response is behavioral avoidance of the potential stressor. Autonomic nervous system responses to stress typically involve changes in heart rate, blood pressure, and gastrointestinal activity. These responses have a relatively short duration and may or may not have a significant long-term effect on an animal's fitness.

Neuroendocrine stress responses often involve the hypothalamus-pituitary-adrenal system. Virtually all neuroendocrine functions that are affected by stress—including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction, altered metabolism, reduced immune competence, and behavioral disturbance (e.g., Moberg, 1987; Blecha, 2000). Increases in the circulation of glucocorticoids are also equated with stress (Romano et al., 2004).

The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and “distress” is the cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose serious fitness consequences. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other functions. This state of distress will last until the animal replenishes its energetic reserves sufficient to restore normal function.

Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses are well-studied through controlled experiments and for both laboratory and free-ranging animals (e.g., Holberton et al., 1996; Hood et al., Start Printed Page 211881998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005). Stress responses due to exposure to anthropogenic sounds or other stressors and their effects on marine mammals have also been reviewed (Fair and Becker 2000; Romano et al., 2002b) and, more rarely, studied in wild populations (e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. These and other studies lead to a reasonable expectation that some marine mammals will experience physiological stress responses upon exposure to acoustic stressors and that it is possible that some of these would be classified as “distress.” In addition, any animal experiencing TTS would likely also experience stress responses (NRC, 2003).

Masking—Sound can disrupt behavior through masking, or interfering with, an animal's ability to detect, recognize, or discriminate between acoustic signals of interest (e.g., those used for intraspecific communication and social interactions, prey detection, predator avoidance, navigation) (Richardson et al., 1995). Masking occurs when the receipt of a sound is interfered with by another coincident sound at similar frequencies and at similar or higher intensity, and may occur whether the sound is natural (e.g., snapping shrimp, wind, waves, precipitation) or anthropogenic (e.g., pile driving, shipping, sonar, seismic exploration) in origin. The ability of a noise source to mask biologically important sounds depends on the characteristics of both the noise source and the signal of interest (e.g., signal-to-noise ratio, temporal variability, direction), in relation to each other and to an animal's hearing abilities (e.g., sensitivity, frequency range, critical ratios, frequency discrimination, directional discrimination, age or TTS hearing loss), and existing ambient noise and propagation conditions.

Masking of natural sounds can result when human activities produce high levels of background sound at frequencies important to marine mammals. Conversely, if the background level of underwater sound is high (e.g. on a day with strong wind and high waves), an anthropogenic sound source would not be detectable as far away as would be possible under quieter conditions and would itself be masked. San Diego Bay is an active, industrialized harbor and hosts numerous recreational and commercial vessels; therefore, background sound levels in the San Diego Bay are already elevated by these activities.

The frequency range of the potentially masking sound is important in determining any potential behavioral impacts. For example, low-frequency signals may have less effect on high-frequency echolocation sounds produced by odontocetes but are more likely to affect detection of mysticete communication calls and other potentially important natural sounds such as those produced by surf and some prey species. The masking of communication signals by anthropogenic noise may be considered as a reduction in the communication space of animals (e.g., Clark et al., 2009) and may result in energetic or other costs as animals change their vocalization behavior (e.g., Miller et al., 2000; Foote et al., 2004; Parks et al., 2007b; Di Iorio and Clark, 2009; Holt et al., 2009). Masking can be reduced in situations where the signal and noise come from different directions (Richardson et al., 1995), through amplitude modulation of the signal, or through other compensatory behaviors (Houser and Moore, 2014). Masking can be tested directly in captive species (e.g., Erbe 2008), but in wild populations it must be either modeled or inferred from evidence of masking compensation. There are few studies addressing real-world masking sounds likely to be experienced by marine mammals in the wild (e.g., Branstetter et al., 2013).

Masking affects both senders and receivers of acoustic signals and can potentially have long-term chronic effects on marine mammals at the population level as well as at the individual level. Low-frequency ambient sound levels have increased by as much as 20 dB (more than three times in terms of SPL) in the world's ocean from pre-industrial periods, with most of the increase from distant commercial shipping (Hildebrand, 2009). All anthropogenic sound sources, but especially chronic and lower-frequency signals (e.g., from vessel traffic), contribute to elevated ambient sound levels, thus intensifying masking.

Underwater Acoustic Effects

Potential Effects of High-Pressure Water Jetting Sound

High-pressure water jetting may be used to assist with installation of concrete piles. Based on existing reference values, high-pressure water jetting noise was estimated to be 158 dB re: 1 μPa (rms) at 10 m based on Naval Facilities Engineering Command, Southwest (2018) measures of high pressure jetting used on 16-inch round and 24x30-inch concrete piles. As previously described, San Diego Bay is an industrialized harbor and hosts numerous recreational and commercial vessels; therefore, background sound levels in the San Diego Bay are elevated by sounds produced by these vessels. The sounds produced by this activity are of similar frequencies to the sounds produced by vessels, and are anticipated to diminish to background noise levels (or be masked by background noise levels) in the Bay relatively close to the project site. Further, these activities are anticipated to occur on the same day as other installation methods. These animals would previously have been `taken' because of exposure to underwater sounds produced by pile driving. Thus, in these cases, behavioral harassment of these animals would already accounted for in these estimates of potential take. Therefore, for the reasons described above, we do not believe that authorization of incidental take resulting from high-pressure water jetting is warranted, and impacts of water jetting are not discussed further.

Potential Effects of Pile Driving Sound

The effects of sounds from pile driving might include one or more of the following: Temporary or permanent hearing impairment, non-auditory physical or physiological effects, behavioral disturbance, and masking (Richardson et al., 1995; Gordon et al., 2003; Nowacek et al., 2007; Southall et al., 2007). The effects of pile driving on marine mammals are dependent on several factors, including the type and depth of the animal; the pile size and type, and the intensity and duration of the pile driving sound; the substrate; the standoff distance between the pile and the animal; and the sound propagation properties of the environment. Impacts to marine mammals from pile driving activities are expected to result primarily from acoustic pathways. As such, the degree of effect is intrinsically related to the frequency, received level, and duration of the sound exposure, which are in turn influenced by the distance between the animal and the source. The further away from the source, the less intense the exposure should be. The substrate and depth of the habitat affect the sound propagation properties of the environment. In addition, substrates that are soft (e.g., sand) would absorb or attenuate the sound more readily than hard substrates (e.g., rock), which may reflect the acoustic wave. Soft porous substrates would also likely require less time to drive the pile, and possibly less forceful equipment, which would ultimately Start Printed Page 21189decrease the intensity of the acoustic source.

In the absence of mitigation, impacts to marine species could be expected to include physiological and behavioral responses to the acoustic signature (Viada et al., 2008). Potential effects from impulsive sound sources like pile driving can range in severity from effects such as behavioral disturbance to temporary or permanent hearing impairment (Yelverton et al., 1973). Due to the nature of the pile driving sounds in the project, behavioral disturbance is the most likely effect from the proposed activity. Marine mammals exposed to high intensity sound repeatedly or for prolonged periods can experience hearing threshold shifts. PTS constitutes injury, but TTS does not (Southall et al., 2007).

Non-Auditory Physiological Effects

Non-auditory physiological effects or injuries that theoretically might occur in marine mammals exposed to strong underwater sound include stress, neurological effects, bubble formation, resonance effects, and other types of organ or tissue damage (Cox et al., 2006; Southall et al., 2007). Studies examining such effects are limited. In general, little is known about the potential for pile driving to cause non-auditory physical effects in marine mammals. Available data suggest that such effects, if they occur at all, would presumably be limited to short distances from the sound source and to activities that extend over a prolonged period. The available data do not allow identification of a specific exposure level above which non-auditory effects can be expected (Southall et al., 2007) or any meaningful quantitative predictions of the numbers (if any) of marine mammals that might be affected in those ways. We do not expect any non-auditory physiological effects because of mitigation that prevents animals from approach the source too closely, as well as source levels with very small Level A harassment isopleths. Marine mammals that show behavioral avoidance of pile driving, including some odontocetes and some pinnipeds, are especially unlikely to incur on-auditory physical effects.

Disturbance Reactions

Responses to continuous sound, such as vibratory pile installation, have not been documented as well as responses to pulsed sounds. With both types of pile driving, it is likely that the onset of pile driving could result in temporary, short term changes in an animal's typical behavior and/or avoidance of the affected area. These behavioral changes may include (Richardson et al., 1995): Changing durations of surfacing and dives, number of blows per surfacing, or moving direction and/or speed; reduced/increased vocal activities; changing/cessation of certain behavioral activities (such as socializing or feeding); visible startle response or aggressive behavior (such as tail/fluke slapping or jaw clapping); avoidance of areas where sound sources are located; and/or flight responses (e.g., pinnipeds flushing into water from haul-outs or rookeries). Pinnipeds may increase their haul out time, possibly to avoid in-water disturbance (Thorson and Reyff, 2006). If a marine mammal responds to a stimulus by changing its behavior (e.g., through relatively minor changes in locomotion direction/speed or vocalization behavior), the response may or may not constitute taking at the individual level, and is unlikely to affect the stock or the species as a whole. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on animals, and if so potentially on the stock or species, could potentially be significant (e.g., Lusseau and Bejder, 2007; Weilgart, 2007).

The biological significance of many of these behavioral disturbances is difficult to predict, especially if the detected disturbances appear minor. However, the consequences of behavioral modification could be expected to be biologically significant if the change affects growth, survival, or reproduction. Significant behavioral modifications that could potentially lead to effects on growth, survival, or reproduction include:

  • Drastic changes in diving/surfacing patterns (such as those thought to cause beaked whale stranding due to exposure to military mid-frequency tactical sonar);
  • Longer-term habitat abandonment due to loss of desirable acoustic environment; and
  • Longer-term cessation of feeding or social interaction.

The onset of behavioral disturbance from anthropogenic sound depends on both external factors (characteristics of sound sources and their paths) and the specific characteristics of the receiving animals (hearing, motivation, experience, demography) and is difficult to predict (Southall et al., 2007).

Auditory Masking

Natural and artificial sounds can disrupt behavior by masking. The frequency range of the potentially masking sound is important in determining any potential behavioral impacts. The most intense underwater sounds in the proposed action are those produced by impact pile driving. Given that the energy distribution of pile driving covers a broad frequency spectrum, sound from these sources would likely be within the audible range of marine mammals present in the project area. Impact pile driving activity is relatively short-term, with rapid pulses occurring for less than fifteen minutes per pile. The probability for impact pile driving resulting from this proposed action masking acoustic signals important to the behavior and survival of marine mammal species is low. Vibratory pile driving is also relatively short-term, with rapid oscillations occurring for approximately 10 minutes per pile. It is possible that vibratory pile driving resulting from this proposed action may mask acoustic signals important to the behavior and survival of marine mammal species, but the short-term duration and limited affected area would result in insignificant impacts from masking. Any masking event that could possibly rise to Level B harassment under the MMPA would occur concurrently within the zones of behavioral harassment already estimated for vibratory and impact pile driving, and which have already been taken into account in the exposure analysis. Active pile driving is anticipated to occur for less than two hours per day and for 50 days between September 15, 2020 and September 14, 2021, so we do not anticipate masking to significantly affect marine mammals.

Airborne Acoustic Effects

Pinnipeds that occur near the project site could be exposed to airborne sounds associated with pile driving that have the potential to cause behavioral harassment, depending on their distance from pile driving activities.

Airborne noise would primarily be an issue for pinnipeds that are swimming or hauled out near the project site within the range of noise levels elevated above the acoustic criteria. Based on the lack of any pinniped haul-outs in the immediate vicinity of the project site, airborne noise associated with construction are not expected to have any impact on pinnipeds. We recognize that pinnipeds in the water could be exposed to airborne sound that may result in behavioral harassment when looking with their heads above water. Most likely, airborne sound would cause behavioral responses similar to those discussed above in relation to underwater sound. For instance, anthropogenic sound could cause hauled out pinnipeds to exhibit changes Start Printed Page 21190in their normal behavior, such as reduction in vocalizations, or cause them to temporarily abandon the area and move further from the source. However, these animals would previously have been `taken' because of exposure to underwater sound above the behavioral harassment thresholds, which are in all cases larger than those associated with airborne sound. Thus, the behavioral harassment of these animals would already accounted for in these estimates of potential take. Therefore, we do not believe that authorization of incidental take resulting from airborne sound for pinnipeds is warranted, and airborne sound is not discussed further here.

Marine Mammal Habitat Effects

The area likely impacted by the project is relatively small compared to the available habitat for California sea lions, and does not include any known areas of important habitat. Navy's proposed construction activities in San Diego Bay are of short duration and would not result in permanent negative impacts to habitats used directly by marine mammals, but could have localized, temporary impacts on marine mammal habitat and their prey by increasing underwater and airborne SPLs and slightly decreasing water quality. Increased noise levels may affect acoustic habitat (see masking discussion above) and adversely affect marine mammal prey in the vicinity of the project area (see discussion below). During pile driving, elevated levels of underwater noise would ensonify the San Diego Bay where both fish and mammals occur and could affect foraging success.

There are no known foraging hotspots or other ocean bottom structure of significant biological importance to marine mammals present in the marine waters of the project area. Therefore, the main impact issue associated with the proposed activity would be temporarily elevated sound levels and the associated direct effects on marine mammals, as discussed previously in this document. The primary potential acoustic impacts to marine mammal habitat are associated with elevated sound levels produced by vibratory and impact pile driving in the area. Physical impacts to the environment such as construction debris are unlikely.

In-water pile driving activities would also cause short-term effects on water quality due to increased turbidity. Silt curtains were considered but not included as a mitigation measure for turbidity because: (1) The sediments of the project site are sandy and will settle out rapidly when disturbed; (2) fine sediment that remains suspended would be rapidly dispersed by tidal currents; and (3) tidal currents would tend to collapse the silt curtains and make them ineffective. The waters of San Diego Bay are degraded and turbidity levels vary greatly depending on location, season, and tidal state. Navy would employ standard construction best management practices (BMPs; see Section 11 of the application), thereby reducing any potential impacts. Therefore, the impact from increased turbidity levels is expected to be discountable.

In-water Construction Effects on Potential Foraging Habitat

Pile installation may temporarily increase turbidity resulting from suspended sediments. Any increases would be temporary, localized, and minimal. In general, turbidity associated with pile installation is localized to about a 25-foot (7.6 m) radius around the pile (Everitt et al. 1980). Pinnipeds could avoid these localized areas of turbidity. Therefore, the impact from increased turbidity levels is expected to be discountable to marine mammals.

Essential Fish Habitat (EFH) for several species or groups of species overlaps with the project area including: Groundfish, coastal pelagic species, krill, finfish, dorado, and common thresher shark. NMFS (West Coast Region) is currently reviewing the proposed action for potential effects to EFH pursuant to the Magnuson-Stevens Fishery Conservation and Management Act.

Avoidance by potential prey (i.e., fish) of the immediate area due to the temporary loss of this foraging habitat is also possible. The duration of fish avoidance of this area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution and behavior is anticipated. Any behavioral avoidance by fish of the disturbed area would still leave significantly large areas of fish and marine mammal foraging habitat in the nearby vicinity.

The duration of the construction activities is relatively short. Pile driving activities would occur for 50 days during the proposed project dates. Impacts to habitat and prey are expected to be minimal based on the short duration of activities.

In-water Construction Effects on Potential Prey (Fish)—Construction activities would produce continuous (i.e., vibratory pile driving) and pulsed (i.e. impact driving) sounds. Fish react to sounds that are especially strong and/or intermittent low-frequency sounds. Short duration, sharp sounds can cause overt or subtle changes in fish behavior and local distribution (summarized in Popper and Hastings, 2009). Hastings and Popper (2005) reviewed several studies that suggest fish may relocate to avoid certain areas of sound energy. Additional studies have documented physical and behavioral effects of pile driving on fish, although several are based on studies in support of large, multiyear bridge construction projects (e.g., Scholik and Yan, 2001, 2002; Popper and Hastings, 2009). Sound pulses at received levels of 160 dB may cause subtle changes in fish behavior. SPLs of 180 dB may cause noticeable changes in behavior (Pearson et al., 1992; Skalski et al., 1992). SPLs of sufficient strength have been known to cause injury to fish and fish mortality (summarized in Popper et al., 2014).

The most likely impact to fish from pile driving activities at the project area would be temporary behavioral avoidance of the area. The duration of fish avoidance of this area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution and behavior is anticipated. In general, impacts to marine mammal prey species are expected to be minor and temporary due to the short timeframe for the project.

In summary, given the short daily duration of sound associated with individual pile driving events and the relatively small and currently industrialized areas being affected, pile driving activities associated with the proposed action are not likely to have a permanent, adverse effect on any fish habitat, or populations of fish species. Thus, we conclude that impacts of the specified activity are not likely to have more than short-term adverse effects on any prey habitat or populations of prey species. Further, any impacts to marine mammal habitat are not expected to result in significant or long-term consequences for individual marine mammals, or to contribute to adverse impacts on their populations.

Estimated Take

This section provides an estimate of the number of incidental takes proposed for authorization through this IHA, which will inform both NMFS' consideration of “small numbers” and the negligible impact determination.

Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, section 3(18) of the MMPA defines “harassment” as any act of pursuit, torment, or annoyance, which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal Start Printed Page 21191stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment).

Authorized takes would be by Level B harassment only, in the form of disruption of behavioral patterns for individual California sea lions resulting from exposure to pile driving activities. Based on the nature of the activity and the anticipated effectiveness of the mitigation measures (i.e., shutdown)—discussed in detail below in Proposed Mitigation section, Level A harassment is neither anticipated nor proposed to be authorized.

As described previously, no mortality is anticipated or proposed to be authorized for this activity. Below we describe how the take is estimated.

Generally speaking, we estimate take by considering: (1) Acoustic thresholds above which NMFS believes the best available science indicates marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) and the number of days of activities. We note that while these basic factors can contribute to a basic calculation to provide an initial prediction of takes, additional information that can qualitatively inform take estimates is also sometimes available (e.g., previous monitoring results or average group size). Below, we describe the factors considered here in more detail and present the proposed take estimate.

Acoustic Thresholds

Using the best available science, NMFS has developed acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur PTS of some degree (equated to Level A harassment).

Level B Harassment for non-explosive sources—Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source (e.g., frequency, predictability, duty cycle), the environment (e.g., bathymetry), and the receiving animals (hearing, motivation, experience, demography, behavioral context) and can be difficult to predict (Southall et al., 2007, Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a factor that is both predictable and measurable for most activities, NMFS uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS predicts that marine mammals are likely to be behaviorally harassed in a manner we consider Level B harassment when exposed to underwater anthropogenic noise above received levels of 120 dB re: 1 μPa root mean square (rms) for continuous (e.g., vibratory pile-driving, drilling) and above 160 dB re: 1 μPa (rms) for non-explosive impulsive (e.g., seismic airguns) or intermittent (e.g., scientific sonar) sources.

Navy's proposed activity includes the use of continuous (vibratory pile driving) and impulsive (impact pile driving) sources, and therefore the 120 and 160 dB re: 1 μPa (rms) thresholds are applicable. As previously discussed, background (ambient) noise in the south-central San Diego Bay was measured at 126 dB re: 1 μPa (L50) in 2019 (Dahl and Dall'Osto 2019), therefore, 126 dB re: 1 μPa was used to calculate the Level B harassment isopleth.

Level A harassment for non-explosive sources—NMFS' Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) (Technical Guidance, 2018) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or non-impulsive). Navy's proposed activity includes the use includes the use of continuous (vibratory pile driving) and impulsive (impact pile driving) sources.

These thresholds are provided in the table below. The references, analysis, and methodology used in the development of the thresholds are described in NMFS 2018 Technical Guidance, which may be accessed at​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance.

Table 3—Thresholds Identifying the Onset of Permanent Threshold Shift

Hearing groupPTS onset thresholds* (received level)
Low-Frequency (LF) CetaceansLp,0-pk,flat: 219 dB; L E, p, LF,24h: 183 dBL E, p, LF,24h: 199 dB.
Mid-Frequency (MF) CetaceansL p, 0-pk,flat: 230 dB; L E, p MF,24h: 185 dBL E, p, MF,24h: 198 dB.
High-Frequency (HF) CetaceansL p, 0-pk,flat: 202 dB; L E, p ,HF,24h: 155 dBL E, p, HF,24h: 173 dB.
Phocid Pinnipeds (PW) (Underwater)L p, 0-pk.flat: 218 dB; L E, p ,PW,24h: 185 dBL E, p, PW,24h: 201 dB.
Otariid Pinnipeds (OW) (Underwater)L p, 0-pk,flat: 232 dB; L E, p ,OW,24h: 203 dBL E, p, OW,24h: 219 dB.
* Dual metric thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds are recommended for consideration.
Note: Peak sound pressure level (L p, 0-pk) has a reference value of 1 µPa, and weighted cumulative sound exposure level (L E,p) has a reference value of 1µPa2 s. In this table, thresholds are abbreviated to be more reflective of International Organization for Standardization standards (ISO 2017). The subscript “flat” is being included to indicate peak sound pressure are flat weighted or unweighted within the generalized hearing range of marine mammals (i.e., 7 Hz to 160 kHz). The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The weighted cumulative sound exposure level thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these thresholds will be exceeded.
Start Printed Page 21192

Ensonified Area

Here, we describe operational and environmental parameters of the activity that will feed into identifying the area ensonified above the acoustic thresholds, which include source levels and transmission loss coefficient.

The sound field in the project area is the existing background noise plus additional construction noise from the proposed project. Pile driving generates underwater noise that can potentially result in disturbance to marine mammals in the project area. The maximum (underwater) area ensonified is determined by the topography of the San Diego Bay including hard structures directly to the south of the project site. Additionally, vessel traffic and other commercial and industrial activities in the project area may contribute to elevated background noise levels which may mask sounds produced by the project.

Transmission loss (TL) is the decrease in acoustic intensity as an acoustic pressure wave propagates out from a source. TL parameters vary with frequency, temperature, sea conditions, current, source and receiver depth, water depth, water chemistry, and bottom composition and topography. The general formula for underwater TL is:

TL = B * Log10 (R1/R2),


TL = transmission loss in dB

B = transmission loss coefficient; for practical spreading equals 15

R1= the distance of the modeled SPL from the driven pile, and

R2= the distance from the driven pile of the initial measurement

This formula neglects loss due to scattering and absorption, which is assumed to be zero here. The degree to which underwater sound propagates away from a sound source is dependent on a variety of factors, most notably the water bathymetry and presence or absence of reflective or absorptive conditions including in-water structures and sediments. Spherical spreading occurs in a perfectly unobstructed (free-field) environment not limited by depth or water surface, resulting in a 6 dB reduction in sound level for each doubling of distance from the source (20*log[range]). Cylindrical spreading occurs in an environment in which sound propagation is bounded by the water surface and sea bottom, resulting in a reduction of 3 dB in sound level for each doubling of distance from the source (10*log[range]). A practical spreading value of fifteen is often used under conditions, such as the project site where water increases with depth as the receiver moves away from the shoreline, resulting in an expected propagation environment that would lie between spherical and cylindrical spreading loss conditions. Practical spreading loss is assumed here.

The intensity of pile driving sounds is greatly influenced by factors such as the type of piles, hammers, and the physical environment in which the activity takes place. In order to calculate distances to the Level A harassment and Level B harassment thresholds for the 24-inch octagonal concrete piles and the 24-inch steel pipe piles proposed in this project, acoustic monitoring data from other locations were used. Empirical data from recent sound source verification (SSV) studies reported in CALTRANS (2015) were used to estimate sound source levels (SSLs) for impact pile driving. For impact pile driving of 24-inch octagonal concrete piles measurements from San Francisco Bay, California were used (SELs-s: 166 dB re: 1 μPa2 s; SPLrms: 176 dB re: 1 μPa; SPLpeak: 188 dB re: 1 μPa) (CALTRANS, 2015). For impact pile driving of 24-inch steel pipe piles measurements from Carquinez Bay, California were used (SELs-s: 178 dB re: 1 μPa2 s; SPLrms: 194 dB re: 1 μPa; SPLpeak: 207 dB re: 1 μPa) (CALTRANS, 2015). For vibratory pile driving of 24-inch steel pipe piles measurements, average data collected from four projects (3 in Washington and 1 in California) reported by United States Navy (2015) were used. The highest project average SPLrms of 162 dB re: 1 μPa was selected as the most reasonable proxy for 24-inch steel pipe piles.

For piles requiring use of vibratory pile driving, it is anticipated that 10 minutes (min) per pile will be required. The number of final strikes via impact pile driving for each pile installed would be dependent on the underlying geology and the exact placement of the pile. For example, pile-driving activities associated with the Pier 12 replacement required between 500 and 600 blows per pile (Alberto Sanchez 2019, personal communication). To be conservative, 600 strikes per pile is estimated for impact pile driving.

Navy used NMFS' Optional User Spreadsheet, available at​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance, to input project-specific parameters and calculate the isopleths for the Level A harassment zones for impact and vibratory pile driving. When the NMFS Technical Guidance (2018) was published, in recognition of the fact that ensonified area/volume could be more technically challenging to predict because of the duration component in the new thresholds, we developed a User Spreadsheet that includes tools to help predict a simple isopleth that can be used in conjunction with marine mammal density or occurrence to help predict takes. We note that because of some of the assumptions included in the methods used for these tools, we anticipate that isopleths produced are typically going to be overestimates of some degree, which may result in some degree of overestimate of Level A harassment take. However, these tools offer the best way to predict appropriate isopleths when more sophisticated 3D modeling methods are not available, and NMFS continues to develop ways to quantitatively refine these tools, and will qualitatively address the output where appropriate. For stationary sources pile driving, the NMFS User Spreadsheet predicts the distance at which, if a marine mammal remained at that distance the whole duration of the activity, it would incur PTS.

Table 4 provides the sound source values and input used in the User Spreadsheet to calculate harassment isopleths for each source type. For impact pile driving, isopleths calculated using the cumulative SEL metric (SELs-s) will be used as it produces larger isopleths than SPLpeak. Isopleths for Level B harassment associated with impact pile driving (160 dB) and vibratory pile driving (126 dB) were also calculated and are can be found in Table 5.

Table 4—User Spreadsheet Input Parameters Used for Calculating Harassment Isopleths

User Spreadsheet parameterImpact pile driving 24-inch octagonal concrete pilesImpact pile driving 24-inch steel pipe pilesVibratory pile driving 24-inch steel pipe piles
Spreadsheet Tab Used(E.1) Impact pile driving(E.1) Impact pile driving(A.1) Vibratory pile driving.
Source Level (SELs-s or SPL rms)166 SELs-sa178 SELs-sa162 dB SPL rmsb.
Source Level (SPLpeak)188207N/A.
Start Printed Page 21193
Weighting Factor Adjustment (kHz)222.5.
Number of piles per day311.
Number of strikes per pile600600N/A.
Number of strikes per day1,800600N/A.
Estimate driving duration (min) per pileN/AN/A10.
Activity Duration (h) within 24-h periodN/AN/A0.167.
Propagation (xLogR)15 Log R15 Log R15 Log R.
Distance of source level measurement (meters)101010.
a CATRANS, 2015.
b United States Navy, 2015.

Table 5—Calculated Distances to Level A Harassment and Level B Harassment Isopleths During Pile Driving

SourceLevel A harassment zone (meters)Level B harassment zone (meters)Level B harassment zone ensonified area (km2)
Otariid pinnipedsPinnipedsPinnipeds
Impact Pile Driving 24-inch octagonal concrete piles41170.043
Impact Pile Driving 24-inch steel pipe piles131,8483.68
Vibratory Pile Driving 24-inch steel pipe piles<12,5126.94
SourcePTS onset Isopleth—peak (meters)
Impact Pile Driving 24-inch octagonal concrete pilesN/A
Impact Pile Driving 24-inch steel pipe pilesN/A

Marine Mammal Occurrence and Take Calculation and Estimation

In this section we provide the information about the presence, density, or group dynamics of marine mammals that will inform the take calculations, and how this information is brought together to produce a quantitative take estimate.

No California sea lion density information is available for south San Diego Bay. Potential exposures to impact and vibratory pile driving noise for each threshold for California sea lions were estimated using data collected during a 2010 survey as reported in Sorensen and Swope (2010). The Sorenson and Swope (2010) survey is the only known survey to provide marine mammal observation data below the San Diego Coronado Bridge (in mid San Diego Bay). The single survey was on February 16, 2010. During this survey one single sea lion was observed off Pier 3 and one single sea lion was observed ~600m from the proposed project site.

Level B harassment Calculations

The estimation of takes by Level B harassment uses the following calculation:

Level B harassment estimate = N (number of animals in the ensonified area) * Number of days of noise generating activities.

The available survey data suggests from Sorenson and Swope (2010) suggests 2 California sea lions could be present each day in the project area, however given the limited data available, to be conservative we have estimated 4 California sea lions could be present each day.

Level B harassment estimate = 4 (number of animals in the ensonified area) * 50 (Number of days of noise generating activities) = 200.

Level A Harassment Calculations

Navy intends to avoid Level A harassment take by shutting down activities if a California sea lion approaches with 25 m of the project site, which encompasses all Level A harassment (PTS onset) ensonification zones described in Table 5. Therefore, no take by Level A harassment is anticipated or proposed for authorization.

Proposed Mitigation

In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to the activity, and other means of effecting the least practicable impact on the species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stock for taking for certain subsistence uses (latter not applicable for this action). NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting the activity or other means of effecting the least practicable adverse impact upon the affected species or stocks and their habitat (50 CFR 216.104(a)(11)).

In evaluating how mitigation may or may not be appropriate to ensure the Start Printed Page 21194least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, we carefully consider two primary factors:

(1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned), and;

(2) the practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity.

In addition to the measures described later in this section, Navy will employ the following standard mitigation measures:

  • Conduct briefings between construction supervisors and crews and the marine mammal monitoring team prior to the start of all pile driving activity, and when new personnel join the work, to explain responsibilities, communication procedures, marine mammal monitoring protocol, and operational procedures;
  • For in-water heavy machinery work other than pile driving (e.g., standard barges, etc.), if a marine mammal comes within 10 m, operations shall cease and vessels shall reduce speed to the minimum level required to maintain steerage and safe working conditions. This type of work could include the following activities: (1) Movement of the barge to the pile location; or (2) positioning of the pile on the substrate via a crane (i.e., stabbing the pile);
  • Though not required, Navy has indicated that in-water pile driving will only be conducted at least 30 minutes after sunrise and up to 30 minutes before sunset, when visual monitoring of marine mammals can be conducted;
  • For those marine mammals for which Level B harassment take has not been requested, in-water pile driving will shut down immediately if such species are observed within or entering the monitoring zone (i.e., Level B harassment zone); and
  • If take reaches the authorized limit for an authorized species, pile installation will be stopped as these species approach the Level B harassment zone to avoid additional take.

The following measures would apply to Navy's mitigation requirements:

Establishment of Shutdown Zone for Level A Harassment—For all pile driving activities, Navy would establish a shutdown zone. The purpose of a shutdown zone is generally to define an area within which shutdown of activity would occur upon sighting of a marine mammal (or in anticipation of an animal entering the defined area). Conservative shutdown zones of 25 m for impact and vibratory pile driving activities would be implemented for California sea lions. The placement of PSOs during all pile driving activities (described in detail in the Monitoring and Reporting Section) will ensure shutdown zones are visible.

Establishment of Monitoring Zones for Level B Harassment—Navy would establish monitoring zones to correlate with Level B harassment zones which are areas where SPLs are equal to or exceed the 160 dB re: 1 µPa (rms) threshold for impact pile driving and the 126 dB re: 1 µPa (rms) threshold during vibratory pile driving (Table 6). Monitoring zones provide utility for observing by establishing monitoring protocols for areas adjacent to the shutdown zones. Monitoring zones enable observers to be aware of and communicate the presence of marine mammals in the project area outside the shutdown zone and thus prepare for a potential cease of activity should the animal enter the shutdown zone.

Table 6—Monitoring and Shutdown Zones for Each Project Activity

SourceMonitoring zone (m)Shutdown zone (m)
Impact pile driving 24-inch octagonal concrete piles12025
Impact Pile Driving 24-inch steel pipe piles1,85025
Vibratory Pile Driving 24-inch steel pipe piles2,51525

Soft Start—The use of soft-start procedures are believed to provide additional protection to marine mammals by providing warning and/or giving marine mammals a chance to leave the area prior to the hammer operating at full capacity. For impact pile driving, contractors would be required to provide an initial set of strikes from the hammer at reduced energy, with each strike followed by a 30-second waiting period. This procedure would be conducted a total of three times before impact pile driving begins. Soft start would be implemented at the start of each day's impact pile driving and at any time following cessation of impact pile driving for a period of 30 minutes or longer. Soft start is not required during vibratory pile driving activities.

Pre-Activity Monitoring—Prior to the start of daily in-water construction activity, or whenever a break in pile driving of 30 minutes or longer occurs, PSOs will observe the shutdown and monitoring zones for a period of 30 minutes. The shutdown zone will be cleared when a marine mammal has not been observed within the zone for that 30-minute period. If a marine mammal is observed within the shutdown zone, a soft-start cannot proceed until the animal has left the zone or has not been observed for 15 minutes. If the Level B harassment zone has been observed for 30 minutes and non-permitted species are not present within the zone, soft start procedures can commence and work can continue even if visibility becomes impaired within the Level B harassment monitoring zone. When a marine mammal permitted for take by Level B harassment is present in the Level B harassment zone, activities may begin and Level B harassment take will be recorded. If work ceases for more than 30 minutes, the pre-activity monitoring of both the Level B harassment and shutdown zone will commence again.

Due to strong tidal fluctuations and associated currents in San Diego Bay, bubble curtains would not be implemented as they would not be effective in this environment.

Based on our evaluation of the applicant's proposed measures, NMFS has preliminarily determined that the Start Printed Page 21195proposed mitigation measures provide the means effecting the least practicable impact on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance.

Proposed Monitoring and Reporting

In order to issue an IHA for an activity, Section 101(a)(5)(D) of the MMPA states that NMFS must set forth requirements pertaining to the monitoring and reporting of such taking. The MMPA implementing regulations at 50 CFR 216.104(a)(13) indicate that requests for authorizations must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present in the proposed action area. Effective reporting is critical both to compliance as well as ensuring that the most value is obtained from the required monitoring.

Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following:

  • Occurrence of marine mammal species or stocks in the area in which take is anticipated (e.g., presence, abundance, distribution, density);
  • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) Action or environment (e.g., source characterization, propagation, ambient noise); (2) affected species (e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the action; or (4) biological or behavioral context of exposure (e.g., age, calving or feeding areas);
  • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors;
  • How anticipated responses to stressors impact either: (1) Long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks;
  • Effects on marine mammal habitat (e.g., marine mammal prey species, acoustic habitat, or other important physical components of marine mammal habitat); and
  • Mitigation and monitoring effectiveness.

Marine Mammal Visual Monitoring

Monitoring shall be conducted by NMFS-approved observers. Trained observers shall be placed from the best vantage point(s) practicable to monitor for marine mammals and implement shutdown or delay procedures when applicable through communication with the equipment operator. Observer training must be provided prior to project start, and shall include instruction on species identification (sufficient to distinguish the species in the project area), description and categorization of observed behaviors and interpretation of behaviors that may be construed as being reactions to the specified activity, proper completion of data forms, and other basic components of biological monitoring, including tracking of observed animals or groups of animals such that repeat sound exposures may be attributed to individuals (to the extent possible).

Monitoring would be conducted 30 minutes before, during, and 30 minutes after pile driving activities. In addition, observers shall record all incidents of marine mammal occurrence, regardless of distance from activity, and shall document any behavioral reactions in concert with distance from piles being driven. Pile driving activities include the time to install a single pile or series of piles, as long as the time elapsed between uses of the pile driving equipment is no more than 30 minutes.

At least 1 land-based PSO will be located at the project site, and for the Navy has indicated that when possible and appropriate during vibratory pile driving activities, 1 additional boat-based PSO would be located at the edge of the Level B harassment isopleth (see Figure 1-2 of the Marine Mammal Monitoring Plan dated March, 2020).

PSOs would scan the waters using binoculars, and/or spotting scopes, and would use a handheld GPS or range-finder device to verify the distance to each sighting from the project site. All PSOs would be trained in marine mammal identification and behaviors and are required to have no other project-related tasks while conducting monitoring. In addition, monitoring will be conducted by qualified observers, who will be placed at the best vantage point(s) practicable to monitor for marine mammals and implement shutdown/delay procedures when applicable by calling for the shutdown to the hammer operator. Navy would adhere to the following PSO qualifications:

(i) Independent observers (i.e., not construction personnel) are required;

(ii) At least one observer must have prior experience working as an observer;

(iii) Other observers may substitute education (degree in biological science or related field) or training for experience;

(iv) Where a team of three or more observers are required, one observer shall be designated as lead observer or monitoring coordinator. The lead observer must have prior experience working as an observer; and

(v) Navy shall submit observer CVs for approval by NMFS.

Additional standard observer qualifications include:

  • Ability to conduct field observations and collect data according to assigned protocols;
  • Experience or training in the field identification of marine mammals, including the identification of behaviors;
  • Sufficient training, orientation, or experience with the construction operation to provide for personal safety during observations;
  • Writing skills sufficient to prepare a report of observations including but not limited to the number and species of marine mammals observed; dates and times when in-water construction activities were conducted; dates and times when in-water construction activities were suspended to avoid potential incidental injury from construction sound of marine mammals observed within a defined shutdown zone; and marine mammal behavior; and
  • Ability to communicate orally, by radio or in person, with project personnel to provide real-time information on marine mammals observed in the area as necessary.

Observers will be required to use approved data forms (see proposed data collection forms in the applicant's Marine Mammal Mitigation and Monitoring Plan). Among other pieces of information, Navy will record detailed information about any implementation of shutdowns, including the distance of animals to the pile and description of specific actions that ensued and resulting behavior of the animal, if any. In addition, Navy will attempt to distinguish between the number of individual animals taken and the number of incidences of take. We require that, at a minimum, the following information be collected on the sighting forms:

  • Dates and times (begin and end) of all marine mammal monitoring;
  • Construction activities occurring during each daily observation period, including how many and what type of Start Printed Page 21196piles were driven or removed and by what method (i.e., impact or vibratory);
  • Weather parameters and water conditions during each monitoring period (e.g., wind speed, percent cover, visibility, sea state);
  • The number of marine mammals observed, by species, relative to the pile location and if pile driving or removal was occurring at time of sighting;
  • Age and sex class, if possible, of all marine mammals observed;
  • PSO locations during marine mammal monitoring;
  • Distances and bearings of each marine mammal observed to the pile being driven or removed for each sighting (if pile driving or removal was occurring at time of sighting);
  • Description of any marine mammal behavior patterns during observation, including direction of travel and estimated time spent within the Level A and Level B harassment zones while the source was active;
  • Number of individuals of each species (differentiated by month as appropriate) detected within the monitoring zone, and estimates of number of marine mammals taken, by species (a correction factor may be applied to total take numbers, as appropriate);
  • Detailed information about any implementation of any mitigation triggered (e.g., shutdowns and delays), a description of specific actions that ensued, and resulting behavior of the animal, if any;
  • Description of attempts to distinguish between the number of individual animals taken and the number of incidences of take, such as ability to track groups or individuals;
  • An extrapolation of the estimated takes by Level B harassment based on the number of observed exposures within the Level B harassment zone and the percentage of the Level B harassment zone that was not visible; and
  • Submit all PSO datasheets and/or raw sighting data (in a separate file from the Final Report referenced immediately above).

A draft report would be submitted to NMFS within 90 days of the completion of marine mammal monitoring, or 60 days prior to the requested date of issuance of any future IHA for projects at the same location, whichever comes first. The report will include marine mammal observations pre-activity, during-activity, and post-activity during pile driving days (and associated PSO data sheets), and will also provide descriptions of any behavioral responses to construction activities by marine mammals and a complete description of all mitigation shutdowns and the results of those actions and an extrapolated total take estimate based on the number of marine mammals observed during the course of construction. A final report must be submitted within 30 days following resolution of comments on the draft report.

In the event that personnel involved in the construction activities discover an injured or dead marine mammal, the IHA-holder shall report the incident to the Office of Protected Resources (OPR) (301-427-8401), NMFS and to the West Coast Region Stranding Coordinator (562-980-3230) as soon as feasible. The report must include the following information:

  • Time, date, and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);
  • Species identification (if known) or description of the animal(s) involved;
  • Condition of the animal(s) (including carcass condition if the animal is dead);
  • Observed behaviors of the animal(s), if alive;
  • If available, photographs or video footage of the animal(s); and
  • General circumstances under which the animal was discovered.

NMFS will work with Navy to determine what, if anything, is necessary to minimize the likelihood of further prohibited take and ensure MMPA compliance. Navy must not resume their activities until notified by NMFS.

Negligible Impact Analysis and Determination

NMFS has defined negligible impact as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival (50 CFR 216.103). A negligible impact finding is based on the lack of likely adverse effects on annual rates of recruitment or survival (i.e., population-level effects). An estimate of the number of takes alone is not enough information on which to base an impact determination. In addition to considering estimates of the number of marine mammals that might be “taken” through harassment, NMFS considers other factors, such as the likely nature of any responses (e.g., intensity, duration), the context of any responses (e.g., critical reproductive time or location, migration), as well as effects on habitat, and the likely effectiveness of the mitigation. We also assess the number, intensity, and context of estimated takes by evaluating this information relative to population status. Consistent with the 1989 preamble for NMFS's implementing regulations (54 FR 40338; September 29, 1989), the impacts from other past and ongoing anthropogenic activities are incorporated into this analysis via their impacts on the environmental baseline (e.g., as reflected in the regulatory status of the species, population size and growth rate where known, ongoing sources of human-caused mortality, or ambient noise levels).

Pile driving activities associated with the Floating Dry Dock Project, as outlined previously, have the potential to disturb or displace marine mammals. Specifically, the specified activities may result in take, in the form of Level B harassment (behavioral disturbance) from underwater sounds generated from impact and vibratory pile driving. Potential takes could occur if individuals of California sea lions are present in the ensonified zone when these activities are underway.

No mortality or Level A harassment is anticipated given the nature of the activity and measures designed to minimize the possibility of injury to marine mammals. The potential for harassment is minimized through the construction method and the implementation of the planned mitigation measures (see Proposed Mitigation section).

Navy's proposed activities are localized and of relatively short duration (a maximum of 50 days of pile driving for 66 piles). The project area is also very limited in scope spatially, as all work is concentrated on a single pier. Localized and short-term noise exposures produced by project activities may cause short-term behavioral modifications in pinnipeds. Moreover, the proposed mitigation and monitoring measures are expected to further reduce the likelihood of injury, as it is unlikely an animal would remain in close proximity to the sound source, as well as reduce behavioral disturbances.

Effects on individuals that are taken by Level B harassment, on the basis of reports in the literature as well as monitoring from other similar activities, will likely be limited to reactions such as increased swimming speeds, increased surfacing time, or decreased foraging (if such activity were occurring) (e.g., Thorson and Reyff, 2006; HDR, Inc., 2012; Lerma, 2014; ABR, 2016). Most likely, individuals will move away from the sound source and be temporarily displaced from the areas of pile driving, although even this reaction has been observed primarily only in association with impact pile driving. Start Printed Page 21197The pile driving activities analyzed here are similar to, or less impactful than, numerous other construction activities conducted in California, which have taken place with no known long-term adverse consequences from behavioral harassment. Level B harassment will be reduced to the level of least practicable adverse impact through use of mitigation measures described herein and, if sound produced by project activities is sufficiently disturbing, animals are likely to simply avoid the area while the activity is occurring. While vibratory pile driving associated with the proposed project may produce sounds above ambient at distances of several kilometers from the project site, thus intruding on some habitat, the project site itself is located in an industrialized bay, and sounds produced by the proposed activities are anticipated to quickly become indistinguishable from other background noise in Bay as they attenuate to near ambient SPLs moving away from the project site. Therefore, we expect that animals annoyed by project sound would simply avoid the area and use more-preferred habitats.

The project also is not expected to have significant adverse effects on affected marine mammal habitat. The project activities would not modify existing marine mammal habitat for a significant amount of time. The activities may cause some fish to leave the area of disturbance, thus temporarily impacting marine mammal foraging opportunities in a limited portion of the foraging range. However, because of the short duration of the activities, the relatively small area of the habitat that may be affected, the impacts to marine mammal habitat are not expected to cause significant or long-term negative consequences.

In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect the species or stock through effects on annual rates of recruitment or survival:

  • No mortality or Level A harassment is anticipated or proposed for authorization;
  • The anticipated incidents of Level B harassment consist of, at worst, temporary modifications in behavior that would not result in fitness impacts to individuals;
  • The specified activity and ensonification area is very small relative to the overall habitat ranges of California sea lions and does not include habitat areas of special significance (BIAs); and
  • The presumed efficacy of the proposed mitigation measures in reducing the effects of the specified activity to the level of least practicable adverse impact.

Based on the analysis contained herein of the likely effects of the specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from the proposed activity will have a negligible impact on all affected marine mammal species or stocks.

Small Numbers

As noted above, only small numbers of incidental take may be authorized under Sections 101(a)(5)(A) and (D) of the MMPA for specified activities other than military readiness activities. The MMPA does not define small numbers and so, in practice, where estimated numbers are available, NMFS compares the number of individuals taken to the most appropriate estimation of abundance of the relevant species or stock in our determination of whether an authorization is limited to small numbers of marine mammals. Additionally, other qualitative factors may be considered in the analysis, such as the temporal or spatial scale of the activities.

The Marine Mammal Occurrence and Take Calculation and Estimation section describes the number of California sea lions that could be exposed to received noise levels that could cause Level B harassment for the Navy's proposed activities in the project area site relative to the total stock abundance. Based on the estimated stock abundance presented in the 2018 Final SARs (257,606), our analysis shows that less than 1 percent of the affected stock could be taken by harassment.

Based on the analysis contained herein of the proposed activity (including the proposed mitigation and monitoring measures) and the anticipated take of marine mammals, NMFS preliminarily finds that small numbers of marine mammals will be taken relative to the population size of the affected species or stocks.

Unmitigable Adverse Impact Analysis and Determination

There are no relevant subsistence uses of the affected marine mammal stocks or species implicated by this action. Therefore, NMFS has determined that the total taking of affected species or stocks would not have an unmitigable adverse impact on the availability of such species or stocks for taking for subsistence purposes.

Endangered Species Act (ESA)

Section 7(a)(2) of the Endangered Species Act of 1973 (ESA: 16 U.S.C. 1531 et seq.) requires that each Federal agency insure that any action it authorizes, funds, or carries out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat. To ensure ESA compliance for the issuance of IHAs, NMFS consults internally whenever we propose to authorize take for endangered or threatened species.

No incidental take of ESA-listed species is proposed for authorization or expected to result from this activity. Therefore, NMFS has determined that formal consultation under section 7 of the ESA is not required for this action.

Proposed Authorization

As a result of these preliminary determinations, NMFS proposes to issue an IHA to the Navy for conducting the Floating Dry Dock Project at Naval Base San Diego in San Diego, California from September 15, 2020 to September 14, 2021, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. A draft of the proposed IHA can be found at​permit/​incidental-take-authorizations-under-marine-mammal-protection-act.

Request for Public Comments

We request comment on our analyses, the proposed authorization, and any other aspect of this Notice of Proposed IHA for the proposed [action]. We also request at this time comment on the potential Renewal of this proposed IHA as described in the paragraph below. Please include with your comments any supporting data or literature citations to help inform decisions on the request for this IHA or a subsequent Renewal IHA.

On a case-by-case basis, NMFS may issue a one-year Renewal IHA following notice to the public providing an additional 15 days for public comments when (1) up to another year of identical or nearly identical, or nearly identical, activities as described in the Specified Activities section of this notice is planned or (2) the activities as described in the Specified Activities section of this notice would not be completed by the time the IHA expires and a Renewal would allow for completion of the activities beyond that described in the Dates and Duration section of this Start Printed Page 21198notice, provided all of the following conditions are met:

  • A request for renewal is received no later than 60 days prior to the needed Renewal IHA effective date (recognizing that the Renewal IHA expiration date cannot extend beyond one year from expiration of the initial IHA);
  • The request for renewal must include the following:

(1) An explanation that the activities to be conducted under the requested Renewal IHA are identical to the activities analyzed under the initial IHA, are a subset of the activities, or include changes so minor (e.g., reduction in pile size) that the changes do not affect the previous analyses, mitigation and monitoring requirements, or take estimates (with the exception of reducing the type or amount of take); and

(2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized; and

  • Upon review of the request for Renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures will remain the same and appropriate, and the findings in the initial IHA remain valid.
Start Signature

Dated: April 10, 2020.

Donna S. Wieting,

Director, Office of Protected Resources, National Marine Fisheries Service.

End Signature End Supplemental Information

[FR Doc. 2020-08006 Filed 4-15-20; 8:45 am]